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o Topics to be covered:

o Parker’s Solar Wind.

o Inteplanetary

Magnetic Field
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The Solar WindThe Solar Wind

o Biermann (1951) noticed that many comets showed excess ionization and abrupt
changes in the outflow of material in their tails - is this due to a solar wind?

o Assumed comet orbit perpendicular to line-of-sight (vperp) and tail at angle ! =>

tan!  = vperp/vr

o From observations, tan ! ~  0.074

o But vperp is a projection of vorbit

=> vperp = vorbit sin " ~ 33 km s-1

o From  600 comets, vr ~ 450 km s-1.
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ParkerParker’’s Solar Winds Solar Wind

o Parker (1958) assumed that the outflow from the Sun
is steady, spherically symmetric and isothermal.

o As PSun>>PISM => must drive a flow.

o First consider static wind similar to Chapman (1957).
The force across and given volume is

F = dP A

o From Newton’s 2nd law: F = m a = # V a.

      = # A dr a

o Therefore, dP A =  # A dr a

o and,

o If a =-G MS / r2, we get
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Equation of Hydrostatic Equilibrium
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ParkerParker’’s Solar Wind (cont.)s Solar Wind (cont.)

o For a steadily expanding wind,

o As,

o or

o Called the momentum equation.

o Eqn. 3 describes acceleration (1st term) of the gas due to a pressure gradient (2nd

term) and gravity (3rd term). Would like Eqn. 3 in terms of v.

o Assuming a perfect gas, P = R # T / µ (R is gas constant; µ is mean atomic weight),

the 2nd term of Eqn. 3 is:
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Eqn. 4Isothermal wind => dT/dr -> 0

F = ma
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ParkerParker’’s Solar Wind (cont.)s Solar Wind (cont.)

o Now, the mass loss rate is assumed to be constant, so the Equation of Mass

Conservation is:

o Differentiating,

o Substituting Eqn. 6 into Eqn. 4, and into the 2nd term of Eqn. 3, we get

o A critical point occurs when dv/dr $ 0 i.e., when

o Setting
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ParkerParker’’s Solar Wind (cont.)s Solar Wind (cont.)

o Rearranging =>

o Gives the momentum equation in terms of the flow velocity.

o If r = rc, dv/dr -> 0 or v = vc, and if v = vc, dv/dr -> ! or r = rc.

o An acceptable solution is when r = rc
 and v = vc (critical point).

o An solution to Eqn. 7 can be found by direct integration:

where C is a constant of integration. Leads to five solutions depending on C.
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Parker’s Solutions
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ParkerParker’’s Solutionss Solutions

o Solution I and II are
double valued. Solution II
also doesn’t connect to the
solar surface.

o Solution III is too large
(supersonic) close to the
Sun - not observed.

o Solution IV is called the
solar breeze solution.

o Solution V is the solar
wind solution (confirmed
in 1960 by Mariner II). It
passes through the critical
point at r = rc and v = vc.

r/rc

v/vc

Critical point
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ParkerParker’’s Solutions (cont.)s Solutions (cont.)

o Look at Solutions IV and V in more detail.

o Solution IV: For large r, v$ 0 and Eqn. 8 reduces to:

o From Eqn. 5:

o From Ideal Gas Law: P
!
 = R # 

!
 T / µ => P

!
 = const

o The solar breeze solution results in high density and pressure at large r

=>unphysical solution.
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ParkerParker’’s Solutions (cont.)s Solutions (cont.)

o Solution V: From the figure, v >> vS for large r. Eqn. 8 can be written:

o The density is then:

=> # $ 0 as r $!.

o As plasma is isothermal (i.e., T = const.), Ideal Gas Law => P $ 0 as r $!.

o This solution eventually matches interstellar gas properties => physically
realistic model.

o Solution V is called the solar wind solution.
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Observed Solar WindObserved Solar Wind

o Fast solar wind (v~700

km s-1) comes from

coronal holes.

o Slow solar wind

(v<500 km s-1) comes

from closed magnetic

field areas.
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Interplanetary Magnetic FieldInterplanetary Magnetic Field

o Solar rotation drags magnetic field
into an Archimedian spiral (r = a%).

o Predicted by Gene Parker => Parker
Spiral:

 r - r0 = -(v/&)(% - %0)

o Winding angle:

o Inclined at ~45º at 1 AU ~90º by 10
AU.
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The Parker SpiralThe Parker Spiral

o http://beauty.nascom.nasa.gov/~ptg/mars/movies/


