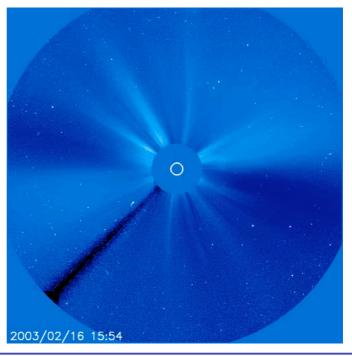
Lecture 3 - The Solar Wind

- o Topics to be covered:
 - o Parker's Solar Wind.
 - o Inteplanetary Magnetic Field

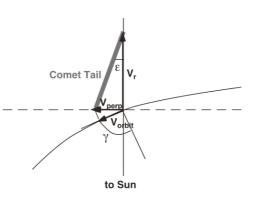


February 2, 2006

Lecture 3 - The Solar Wind

The Solar Wind

- Biermann (1951) noticed that many comets showed excess ionization and abrupt changes in the outflow of material in their tails is this due to a solar wind?
- Assumed comet orbit perpendicular to line-of-sight (v_{perp}) and tail at angle $\varepsilon = \tan \varepsilon = v_{perp}/v_r$
- o From observations, tan $\varepsilon \sim 0.074$
- But v_{perp} is a projection of v_{orbit} => $v_{perp} = v_{orbit} \sin \gamma \sim 33 \ km \ s^{-1}$
- o From 600 comets, $v_r \sim 450 \text{ km s}^{-1}$.

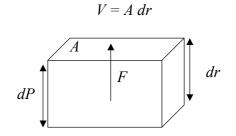


Parker's Solar Wind

- Parker (1958) assumed that the outflow from the Sun is steady, spherically symmetric and isothermal.
- As $P_{Sun} >> P_{ISM} =>$ must drive a flow.
- First consider static wind similar to Chapman (1957). The force across and given volume is F = dP A
- From Newton's 2^{nd} law: $F = m a = \rho V a$. = $\rho A dr a$
- o Therefore, $dP A = \rho A dr a$

o and,
$$\frac{dP}{dr} = \rho a$$

o If
$$a = -G M_S / r^2$$
, we get $\frac{dP}{dr} + \frac{GM_S \rho}{r^2} = 0$



Eqn 1. Equation of Hydrostatic Equilibrium

February 2, 2006

Lecture 3 - The Solar Wind

Parker's Solar Wind (cont.)

• For a steadily expanding wind,
• For a steadily expanding wind,
• As,
$$\frac{dv}{dt} = \frac{dv}{dr}\frac{dr}{dt} = \frac{dv}{dr}v$$
 $=> \rho v \frac{dv}{dr} = -\frac{dP}{dr} - \frac{GM_s\rho}{r^2}$
• Or
• $v \frac{dv}{dr} + \frac{1}{\rho}\frac{dP}{dr} + \frac{GM_s}{r^2} = 0$ Eqn. 3
• Called the momentum equation.
• Eqn. 3 describes acceleration (1st term) of the gas due to a pressure gradient (2nd term) and gravity (3rd term). Would like Eqn. 3 in terms of v.
• Assuming a perfect gas, $P = R \rho T / \mu$ (*R* is gas constant; μ is mean atomic weight

Assuming a perfect gas, $P = R \rho T / \mu$ (*R* is gas constant; μ is mean atomic weight), the 2nd term of *Eqn. 3* is: Isothermal wind => $dT/dr \rightarrow 0$ $\Rightarrow \frac{1}{\rho} \frac{dP}{dr} = \left(\frac{RT}{\mu}\right) \frac{1}{\rho} \frac{d\rho}{dr}$ *Eqn. 4*

Parker's Solar Wind (cont.)

- Now, the mass loss rate is assumed to be constant, so the Equation of Mass Conservation is: $\frac{dM}{dt} = 4\pi r^2 \rho v = const \Rightarrow r^2 \rho v = const \qquad Eqn. 5$
- o Differentiating, $\frac{d(r^2\rho v)}{dr} = r^2 \rho \frac{dv}{dr} + \rho v \frac{dr^2}{dr} + r^2 v \frac{d\rho}{dr} = 0$ $= > \frac{1}{\rho} \frac{d\rho}{dr} = -\frac{1}{v} \frac{dv}{dr} - \frac{2}{r}$ Eqn. 6
- o Substituting Eqn. 6 into Eqn. 4, and into the 2nd term of Eqn. 3, we get

$$v \frac{dv}{dr} + \frac{RT}{\mu} \left(-\frac{1}{v} \frac{dv}{dr} - \frac{2}{r} \right) + \frac{GM_s}{r^2} = 0$$
$$\Rightarrow \left(v - \frac{RT}{\mu v} \right) \frac{dv}{dr} - \frac{2RT}{\mu r} + \frac{GM_s}{r^2} = 0$$

- A critical point occurs when $dv/dr \rightarrow 0$ i.e., when $\frac{2RT}{\mu r} = \frac{GM_s}{r^2}$
- o Setting $v_c = \sqrt{RT/\mu} \Longrightarrow r_c = GM_s/2v_c^2$

February 2, 2006

Lecture 3 - The Solar Wind

Parker's Solar Wind (cont.)

- o Rearranging => $\left(v^2 v_c^2\right) \frac{1}{v} \frac{dv}{dr} = 2 \frac{v_c^2}{r^2} (r r_c) \qquad Eqn. 7$
- o Gives the momentum equation in terms of the flow velocity.

o If
$$r = r_c$$
, $dv/dr \rightarrow 0$ or $v = v_c$, and if $v = v_c$, $dv/dr \rightarrow \infty$ or $r = r_c$.

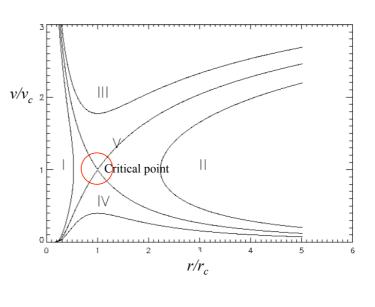
- An acceptable solution is when $r = r_c$ and $v = v_c$ (*critical point*).
- o An solution to *Eqn.* 7 can be found by direct integration:

$$\left(\frac{v}{v_c}\right)^2 - \ln\left(\frac{v}{v_c}\right)^2 = 4\ln\left(\frac{r}{r_c}\right) + 4\frac{r_c}{r} + C$$
Eqn. 8
Parker's Solutions

where C is a constant of integration. Leads to five solutions depending on C.

Parker's Solutions

- Solution I and II are double valued. Solution II also doesn't connect to the solar surface.
- Solution III is too large (supersonic) close to the Sun - not observed.
- Solution IV is called the solar breeze solution.
- o Solution V is the solar wind solution (confirmed in 1960 by Mariner II). It passes through the critical point at $r = r_c$ and $v = v_c$.



February 2, 2006

Lecture 3 - The Solar Wind

Parker's Solutions (cont.)

- o Look at Solutions IV and V in more detail.
- o Solution IV: For large $r, v \rightarrow 0$ and Eqn. 8 reduces to:

$$-\ln\left(\frac{v}{v_c}\right)^2 \approx 4\ln\left(\frac{r}{r_c}\right) \Rightarrow v \approx \frac{1}{r^2}$$

o From *Eqn. 5*:

$$\rho = \frac{const}{r^2 v} \Longrightarrow \rho \longrightarrow \rho_{\infty} = const$$

- 0 110m *Eqn.* 5.
- o From Ideal Gas Law: $P_{\infty} = R \rho_{\infty} T / \mu => P_{\infty} = const$
- The *solar breeze solution* results in high density and pressure at large r = >unphysical solution.

Parker's Solutions (cont.)

o Solution V: From the figure, $v >> v_s$ for large *r*. Eqn. 8 can be written:

$$\left(\frac{v}{v_c}\right)^2 \approx 4\ln\left(\frac{r}{r_c}\right) \Longrightarrow v \approx \left(\ln\left(\frac{r}{r_c}\right)\right)^{1/2}$$

• The density is then: $\rho = \frac{const}{r^2 v} \approx \frac{const}{r^2 \sqrt{\ln(r/r_c)}}$

$$\Rightarrow \rho \rightarrow \theta \text{ as } r \rightarrow \infty.$$

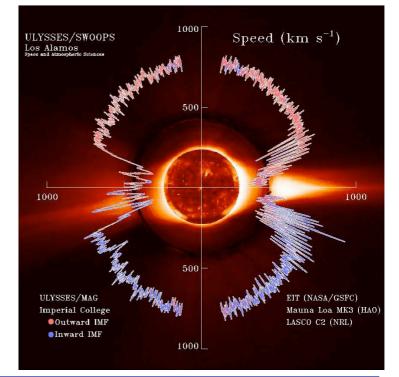
- As plasma is isothermal (i.e., T = const.), Ideal Gas Law $\Rightarrow P \rightarrow 0$ as $r \rightarrow \infty$.
- This solution eventually matches interstellar gas properties => physically realistic model.
- o Solution V is called the *solar wind solution*.

February 2, 2006

Lecture 3 - The Solar Wind

Observed Solar Wind

- Fast solar wind $(v \sim 700 \ km \ s^{-1})$ comes from coronal holes.
- o Slow solar wind $(v < 500 \ km \ s^{-1})$ comes from closed magnetic field areas.



Lecture 3 - The Solar Wind

Interplanetary Magnetic Field

- Solar rotation drags magnetic field into an Archimedian spiral $(r = a\theta)$.
- Predicted by Gene Parker => Parker Spiral:

$$r - r_0 = -(v/\Omega)(\theta - \theta_0)$$

- Winding angle: $\tan \psi = \frac{B_{\phi}}{B_r} = \frac{v_{\phi}}{v_r}$ $= \frac{\Omega(r r_0)}{v_r}$
- Inclined at ~45° at 1 AU ~90° by 10 AU.

 Ω

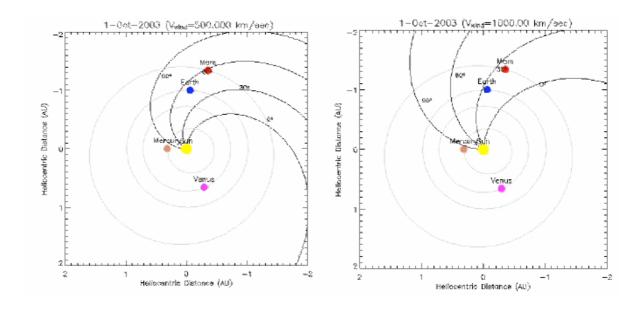
 B_{ϕ} or v_{ϕ}

r

 B_r or v_r

В

 (r_0, θ_0)



o http://beauty.nascom.nasa.gov/~ptg/mars/movies/