
Dust particles in circumstellar disks and planetary systems

Dust particles are ubiquitous, they are found in circumstellar disks here they are the building blocks of 
planets, they are produced in minor bodies collisions  forming  debris disks and rings around planets, 
they populate the galactic environment as interstellar dust. Dust grains move under the influence of the 
local gravity field, but they can be perturbed also by non-gravitational forces like radiation pressure and 
Poyting-Robertson drag and they may be dragged by the gas in circumstellar disks. To understand how 
non-gravitational forces act on dust grains we need to know, at least approximately, how they interact 
with the radiation field they are embedded in. 

Absorption and emission of light

A (idealized) black body emits radiation at different wavelengths λ with an amount of  energy which 
depends on both the body temperature and λ itself according to Planck's formula
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where h is Planck' constant (6.62606896(33)×10−34 J s), c is the speed of light (299792458 m/s), k is the 
Boltzmann constant (1.380 6504×10  −23  J K-1) and T is the body temperature. The above equation can 
be integrated over all  wavelengths to get the Stefan-Boltzmann equation

E=T 4

where E is the total energy emitted by the body and σ is a constant  (5.67×10−8 W m−2 K−4). Another 
law is Wien's law giving the wavelength at which the maximum energy is emitted

MAX=
b
T

with b = 2.8977685(51)×10−3 m K. 



T (K) λΜ   (m) Radiation

30-4000 0.01-7 ×10-5 infrared

4100.-7400 7 – 4 ×10-5 visible

7300-3×106 4 ×10-5 -  10-7 ultraviolet

3×106  − 3×108 10-7-10-9 x-rays

A body absorbs energy (radiation) until it reaches an equilibrium temperature at thermal balance where 
it emits as much energy as it absorbs. To compute the temperature of a body in open space one has to 
compute the absorbed radiation energy. In the solar system, to derive the energy of an asteroid or space 
probe at a distance r from the sun the amount of solar irradiation must be known at the object distance. 
Usually, the solar constant W is used which is defined as the quantity of solar energy (W/m²) at normal 

incidence outside the atmosphere at the mean sun-earth distance whose mean value is 1367.7 W/m² . 
The temperature is then computed as

T=W 
r2

R2  

where r is the body radius (assuming it is spherical) and R is the distance from the sun in AU. 

Dust particles around a star

Circumstellar disks are made of gas and dust whose ratio depends on the distance on the local 
temperature and then on the distance from the star. Silicates can condensate very close to the star so in 
the terrestrial planet region we expect rocky grains. Beyond the frost line where the disk temperature 
drops beyond the  value that allows ices to condensate (located around 3-5 AU from a solar type star), 
more solid material is available and dust grains are made of a mixture of ice and rock. From dusty 
grains bigger bodies can accumulate (planetesimals) and planets can form. After the dissipation of the 
gas in a disk dust rings can be observed either as remnant of the accumulation process or constantly 
produced by collisions between larger bodies like asteroids and  comets (debris disks).  A minor 
fraction can also come  from outside the star gravitational reach directly from the galactic environment. 

The dust populating our solar system can be seen in 
clear nights (zodiacal light).  It is mostly composed by 
grains having typical sizes of 10-100 µm and they can 
be observed at 5-50  µm wavelenght. The 
 distribution of dust is modeled with the following 
formula (Giese et al. 1986) where the dependence on 
the radius is separated from that on the latitude angle

 r ,=0
r0

r



f 



where r is the distance from the sun, β is the helioecliptic latitude (latitude respect to the ecliptic plane), 
0≈9.6×10−20 kg /m3 is the dust density at the Earth's orbit ( r 0=1 AU ). The value of the 

parameter α, as derived from photometers on board of missions Helios 1 and Helios 2 is about 1.3 
(Grun 1985).  The function f(β) is approximated in the so called ellipsoid model in the following way

f =
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where E=a2
b2

/b with a and b semimajor and semiminor axes of an oblate ellipsoid (a=c>b 
with a and c on the ecliptic plane), respectively. Most of the dust is concentrated within about 3 AU in 
the ecliptic plane and 1.5 AU off the  plane 
even if dense dust rings are observed in the 
asteroid belt due to asteroid collisions. 

   

Together with the ellipsoidal component, there are additional reservoirs of dust in the solar system, and 
possibly in all planetary systems, which include  dust bands in the asteroid belt and cometary dust 
trails. From the data of IRAS satellite  numerous dust bands where identified in the asteroid belt (sykes 
1988), possibly due to rings of dust outcome of catastrophic disruption of an asteroid. 

Radiation pressure and Poynting-Robertson drag.

A dust particle with area A will absorb radiation from the star which depends on its distance from the 
source. We call S the flux of radiation whose value is the solar constant W.  If the particle is on an 
eccentric orbit, it has a radial component of velocity and, as a consequence, the flux is modulated by 

the Doppler effect S '=S 1−
r
c
 . The particle absorbs an energy per unit of time equal to S ' A . 

This energy is in the form of photons carrying a momentum equal to E /c . The total pressure felt by 
the particle because of the momentum released by radiation is

F p=
S ' A

c
s

where s is a versor in the antisolar direction. With a semi-classical reasoning, we can also derive the 
force on a grain due to the radiation re-emission (usually in the infrared). The amount of energy emitted 
by the dust particle must keep thermal balance and it is equal to the absorbed energy. This energy is re-
emitted  radially with spherical symmetry in the infrared. Since the particle moves in space (respect to 
the star) with a velocity v, we can imagine that the whole re-emitted energy is equivalent to a mass 

m=
E

c2 ejected with the same velocity of the particle v along the same direction. As a consequence, 



the particle is affected by a recoil force equal to

F PR=−
S ' A

c2
v

This force is called Poynting-Robertson drag, it tends to slow down the particle and it is direction in the 
opposite direction respect to the particle velocity. The total force felt by a dust grain lighted by a star is 
then
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assuming that  
ṙ v

c2  is a small number. This is the original derivation of the Robertson's formula. The 

formula can be proved more rigorously using special relativity.  

Particle properties: absorption and reflection coefficients. 

Of the total energy S striking a particle, a fraction f S is absorbed while a fraction g S is reflected with 
g+f=1. A new coefficient is introduced which usually is indicated with Qpr and it is given by 

Q pr=1g . A perfectly absorbing particle has  Qpr =1 while a perfectly reflecting particle (assuming 
that the radiation is scattered backwards) has  Qpr =2.  The situation can be complicated by the presence 
of light diffusion, but, as a first approximation, we assume that the light is scattered back towards the 
sun. 

Relativistic derivation of  Robertson's formula

Let's assume that a dust grain is moving respect to the star on a circular orbit (no radial velocity 
component) with velocity v. The configuration is illustrated in the bottom figure where the velocity of 
the grain v is directed along the z'-axis which is parallel to the z-axis of the reference frame centered on 
the star. A flux of photons leaves the star radially and part of the flux will meet the particle after 
traveling in the antisolar direction -x.  At any instant of time we can assume that the reference frames 
are inertial with the frame attached to the grain moving with constant velocity along z∥z ' . This is a 

good assumption since the absorption and 
re-emission of energy occurs on a short 
timescale compared to the circular motion 
frequency and we do not have to worry 
about the accelerated circular motion of 
the grain. We also neglect the fact that 
both the reference frame are not inertial 
because that centered on the star is 
moving under the effect of the dust 
gravitational attraction. However, the 
acceleration is so small that can be safely 
neglected. 



The radiation flux of photons can be described by the momentum 4-vector

p=
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−E /c

0
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where we take into account the relation between energy and momentum of a photon p x=−

E
c

. The 

minus sign is due to the antisolar direction of the photon flux. In the reference frame centered on the 
particle, where absorption and reflection occurs, p ' is computed by using a Lorentz transformation
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where =
v
c  and =

1

1−
2 . Now that we have the photon flux in the moving reference frame 

of the dust grain, we can compute the momentum absorbed and reflected by the particle. The 
coefficient g=1−Q pr gives the amount of radiation reflected by the dust particle which is described 
by the 4-vector

p ' R=
E /c

−E /c 1−Q pr

0
− E /c 1−Q pr


It is noteworthy that the 0-term of p 'R is not multiplied by 1−Q pr . The reason is that p ' R

0

includes the contribution from the re-emitted radiation. This radiation is re-emitted isotropically in the 
reference frame of the particle. This implies that the total 3-momentum of the re-emitted flux is 0 in 
this reference frame since for  any photon emitted in one direction, there is one emitted in the opposite 
direction. The re-emitted energy is instead equal to the absorbed energy multiplied by the coefficient f 

E f= f E=1−g E=1−Q pr1=2−Q pr E . This energy must be added to the energy of the 
reflected photons that is E g=g E=Q pr−1E so that the energy that appears as fourth component of 

p 'R is E R= f g  E=2−Q prQ pr−1E=E .  We can transform p 'R back to the reference 
frame centered on the star so that from the difference between the initial four momentum p and that 
after the interaction with the dust particle we can compute the force acting on the grain. We apply the 
inverse Lorentz transformation to get
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By collecting similar terms we arrive a the following expression for pR
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Note that the 0-component pR is larger than the initial value E/c and this is due to the loss of kinetic 
energy of the particle, in favor of the radiation field, because of the recoil effect produced both by 
reflecting and re-emitting photons. Finally, we can evaluate the force acting on the dust particle 
because of its interaction with the radiation field of the star. The recoil force will be given by 

F=− pR− p and its expression is the following  
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We can outline the single components along the radial direction (x-axis) and along the direction of the 
velocity vector of the particle (z-axis)

F r=−E /cQPR s   

F v=
2 E /cQPR uv≈E / cQPR uv=E /c2 QPR v

We have retrieved the formulas for the radiation pressure ( F r ) and for the Poyting-Robertson drag (
F v ). The proof for a particle on an eccentric orbit is similar but more complex and there will be a 

Doppler effect term on the energy E. 

* Burns, Lamy and Soter, Icarus 40, 1-48, 1979

Effects of radiation pressure on the orbit of dust particles

Radiation pressure force has a 1/r 2 dependence hidden in the radiation flux S and, as a consequence, 
its effect is that of  weakening the gravitational attraction of the star.  The ratio between the 
gravitational attraction and radiation pressure leads to the definition of the coefficient β



=
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where S0 is the radiation flux at 1 AU from the star and r is measured in AU. The central force felt by 
the dust particle is then given by

F c=
1−G m p M s

r2 ing the sun, the value of β can be approximated as  ≈5.7×10−7QPR / s

where the radius s and the density  ρ of the particle are in cgs units. 

For spherical particles orbit

If the dust particle is on a given orbit, its orbital elements will be constants but the orbital period will be 
longer and the orbital velocity slower. If instead the dust particle is emitted from a body on a given 
orbit (like a comet because of outgassing) then the orbital elements of the grain can be significantly 
different from those of the parent body and the grain can also be ejected on a hyperbolic orbit. Let's 
assume that the dust grain is ejected when the comet is at perihelion by a comet with semimajor axis a 
and eccentricity e. When the grain is part of the parent body, its orbital energy (which must be negative 
to be tied to the star) is given by:

E=


2 a
1e
1−e

−


a 1−e 

where a(1-e) is the periastron distance rp. When the particle detaches from the comet its orbital energy 
is given by

E=

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1−e
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 does not significantly change at ejection (the ejection velocity is 

negligible respect to the orbital velocity) while the potential energy is different because of the radiation 
pressure. If the term 1e−22 becomes larger than 0 because of the presence of β then the 
particle escapes the gravitational attraction of the star. The condition for escape can be given as a 
maximum value of   β beyond which escape occurs

≥
1−e 

2

This condition becomes

≥
1e 

2

at aphelion. Clearly, escape from the star's gravity field occurs more easily when the dust is emitted at 



perihelion. The condition on  β  can be transformed in one for the radius of the particle so that only 
particles smaller than

s=
S0QPR

4 /3cG M s

Effects of Poynting-Robertson drag on the orbital evolution of dust 
grains.

Averaging over many orbits the drag force due to radiation re-emission, the orbital elements of the 
grains change with time.  The average (over the mean anomaly) changes in orbital semimajor axis, 
eccentricity and perihelion longitude are given by:

d a
d t

=
−23e2



a1−e2


3/2

d e
d t
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−5e
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=
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c2 a5 /2
1−e2



with =G M s/c . The net results is in a decrease of the semimajor axis and a circularization of the 
orbit. The larger is the eccentricity of the orbit, the faster is the inward migration because the 
semimajor axis derivative depends quadratically on the eccentricity. For almost circular orbits, we can 

derive a decay rate given by ȧ /a=−2


a2 and a decay time around the sun t dec≈3200 r2 s  with 

t dec  given in yrs, r in AU and s in m .

APPENDIX A: summary of special relativity concepts.

Coordinates: ct , x 
Interval (invariant):  ds2

=−c2dtdx2

Proper time (invariant) i.e. time measured by local clock:  d 2
=−ds2

/c2
=dt 2

−dx2
/c2

Four velocity: U=d P /d
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The scalar product of U with itself is: U⋅U=U U=−c2

The four momentum of a particle is 

p=m0 U=
m0 c
 px

..

..
=

E /c
 px

..

..
  where 

E=
m0 c2

1−
v2

c2

The modulus of the momentum is p⋅p=−m0
2c2

For the photon: p⋅p=−m0
2c2

=−E2
/c2

p2 where p2
=

2 px
2 . Since m0=0 for the photon, we 

get p=E /c and the whole 4-vector becomes

p=
E /c

±E /c
..
..

  where the + or – sign depends on the propagation direction. 

APPENDIX B: Tetrads



In the classical formalism, if we want to compute the four components of the velocity of P respect to 
an inertial  frame centered in R, knowing their value in the frame centered in O, we have to perform a 
Lorentz transformation. We call UO

P the 4-velocity of P respect to O, while UR
P will be the 4-

velocity of P respect to R, v P is the 3-velocity vector of P measured respect to O, while  v R is the 
3-velocity of the reference frame centered in R respect to that centered on O 

UO
P
=

P c
P v P

0
0

      UO
R
=

R c
R v R

0
0


If we apply the Lorentz transformation to UO

P we get the components of UR
P .

UR
P
=UO

P
=

R −R R 0 0
−RR R 0 0

0 0 0 0
0 0 0 0

⋅
Pc
P v P

0
0

=
R P c−RR p vP

−RR P cRP vP

0
0


Let's now turn to the tertrad formalism.  A tetrad is a set of axes (usually orthonormal) attached to a 
point in space-time. We assign to the observer centered in R a tetrad e0 ,e1 ,e2 ,e3 so that the 
components of UR

P will be computed as projections (scalar product) of UO
P over e0 ,e1 .... . To 

find the tedrad attached to R we first note that the 4-velocity UO
R is parallel to e0 . In effect, the 4-

vector UO
R , once computed in the reference frame of R, has component (c,0,0,0) so it can be related 

directly to e0 trough the identity

e0=
U o

R

c
=

R

R R

0
0


From e0 and the orthogonality relation between versors, we can compute e1

 e0⋅e1=0  and  ∣e1∣=1  lead to e1=
R vR /c

R

0
0

 .

The remaining versors e2,e3 can be chosen parallel to those of the observer centered in O. Once 
found the tetrad of the observer R,  the components of UR

P can be derived by projecting (with the 
scalar product) the 4-vector UP  on the tetrad vectors e0 ,e1 ,e2 ,e3



U R
P ,0
=UP

⋅e0=
P c
P vP

0
0

−R , Rr , 0, 0=−RP cRR P v P

The value of U R
P ,0  is the same as that obtained with the Lorentz transformation but with the opposite 

sign. This because in the scalara product the metric tensor is involved  and the scalar product of 
any vector u with  e0 u⋅e0=u e0


=−u0 .  The x-component of UR

P is

U R
P,1
=U P

⋅e1=
P c
P v P

0
0

−R v R/c ,R , 0, 0=−R P c /c vRRP v P=−RR P cRP vP

This, again, is equal to the value obtained with the Lorentz transformation. With tetrads we can 
compute the components of a 4-vector in any reference frame attached to an observed if we now his 4-
velocity. We compute its tetrad and project the 4-vector of interest on the tetrad. 

Another example (Misner, Thorne and Wheeler, Gravitation) is the uniformly accelerated motion. Let's 
assume that an observer is on a rocket moving with constant acceleration equal to g .  The 4-velocity U 

is always perpendicular to the 4-acceleration a since a=
DU
d 

and 

a⋅U=
d U
d 

⋅U=
d

d 

1
2
U⋅U =

d
d  −1

2
c2=0

In the reference frame comoving with the observer (an inertial frame moving with the instantaneous 
velocity of the rocket or that for which u=e0 ) we can determine more easily the components of the 

4-vectors. In particular,  the 4-velocity is given by U=
c
0
0
0
  ( dt=d  in the comoving frame) and, 

as a consequence, a0
=0  (we assume hereinafter for simplicity that c=1). The other components of 

the acceleration are ai
=

d x i

d
=

d x i

d t
. The component along x (which we suppose to be the  direction 

of the accelerated motion) is then a1
=g . In the comoving frame the observer measures an 

acceleration since the comoving frame is locally inertial. In conclusion, ∣a2∣=g2 and then 
a⋅U=0 ,U⋅U=−1 . These relations, being between 4-vectors, hold true in any reference frame, also 

for an inertial observer that watches the rocket moving along the x-axis.  From the definition of  4-
velocity and 4-acceleration we can write

−U 0U 0
U1 U1

=−1
−U 0 a0

U1 a1
=0

−a0 a0
a1 a1

=g2



The solution to this system is given by

a0
=gU1

a1
=gU 0

Taking also into account the definition of  4-velocity and 4-acceleration the solution become

a0=
dU 0

d 
=gU 1

a1
=

dU 1

d 
=gU 0

 

The equations  of the rocket position in the 4-space parametrized by an inertial frame are therefore

d t
d 

=g
d x
d

d2 x
d2=g

d t
d 

which have the solution

t=sinh g/ g
x=cosh g/ g

This is the trajectory of the rocket in space-time parametrized by the proper time τ.  We can derive the 
dilatation of time for the accelerated observer noticing that d t /d=cosh g .  The interval of time 
measured by the accelerated observer is than  d t '=d =d t /cosh g . At this stage we con build up 
the comoving tetrad for the accelerated observer

e0=U ,e ' 2=e2,e '3=e3  

where e0,e1,e2,e3  are the versor of the inertial observer computing the motion of the accelerating 
rocket, while e ' 0,e ' 1,e ' 2,e '3 are the versors of the comoving tetrad. The versor e ' 1 can be 
computed from the orthonormality conditions since it must be perpendicular to e ' 0,e ' 2,e ' 3 so it must 
be parallel to the 4-acceleration a and its expression is e ' 1=a/ g .  The tetrad is then defined as

e ' 0=dt /d , dx /d  , 0,0=cosh g ,sinh g ,0,0

e ' 1=
d U 0

d
1
g

,
dU 1

d 
1
g

,0,0=U1 ,U 0 ,0 ,0=sinh g ,cosh g ,0,0

e '2=0,0,1,0
e '3=0,0,0,1


