
                           The Magnetic field of the Earth and Planets

Earth's magnetic field

1. Structure 

Earth's magnetic field has many relevant effects on the space around the planet. It protects the surface 
from the solar wind creating the magnetosphere, it traps charged particles in the Van Allen radiation 
belts and it is involved in the formation of the spectacular  aurora borealis (or northern lights).  In Fig. 
1 the intensity of the field is shown at different locations on the Earth surface. 

Fig. 1: magnetic field of the Earth according to 
IGRF (International Geomagnetic Reference Field, 
year 2000). Red color corresponds to 68000 nT 
while blue color is for 24000 nT.

The IGRF representation of the magnetic field outside the Earth is obtained by a spherical harmonics 
development. Starting from the  Ampere-Maxwell equation:

∇×B=μ0  j+ε 0
∂E
∂ t 

we can assume that outside the Earth surface j=0 (the source is inside the Earth). We can also adopt the 

approximation that    ∂E
∂ t  = 0 so that we get: 

∇×B=0
As a consequence, the magnetic field can be derived from the gradient of a scalar function V that we 
call magnetic potential: 

B=−∇V

Moreover, we know that the third Maxwell equations requires that:

∇⋅B=0

which leads to a Laplace equation for the magnet field potential V out of the Earth's surface: 

∇
2V= 0



Due to the spherical nature of the boundary conditions the solution can be expressed a series of 
spherical harmonics: 
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where  a is the Earth's radius (for the International Geomagnetic Reference Field (IGRF) a=6371,2 
km); g n

m  e hn
m  are the Gauss' coefficients and  r, θ , φ  are the radial distance, co-latitude 

(complementary angle of the latitude) and longitude measured from Greenwich towards east, 
respectively.  The Pn

m  are the Legendre functions. The Gauss' coefficients are given by IGRF and are 
computed with least squares interpolation of  measured data on the magnetic field. The components of 
the magnetic field are given by:
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2. Source

What is the source of the magnetic field? To answer this question we have to explore the interior of the 
Earth.  Earthquakes and the difference in the propagation of seismic waves which depends on the 
composition of the crossed material, have lead to the following model of Earth's interior: 

Fig. 2: different propagation paths of seismic waves on 
the interior of the Earth. Reflection and refraction 
phenomena. 

The Earth is divided in the lithosphere (crust and uppermost mantle),  the mantle, an outer liquid core 
and an inner solid core. 



Fig.3: Earth's 
structure.

The inner core is 
solid and it is 
believed to be made 
of a nickel-iron 
alloy (Ni about 5-

10 wt%)  with very small amounts of some lighter elements. It is the outcome of the Earth 
differentiation with the heavier elements sinking towards the center of the planet after its formation. It 
is unattached to the mantle, suspended in the molten outer core and, in spite of its high temperature 
(5000-6000 C),  it is believed to have solified as a result of pressure-freezing which occurs to most 
liquids under extreme pressure.  

 
  

Fig. 4. Typical pressure-temperature diagram for a solid (the dotted line shows the anomalous behavior 
of water). Increasing the pressure leads to crystallization at higher temperatures. On the left, the phase 
diagram for a Fe-10wt%Ni alloy from Lin et al., Geophysical Research Letters 29, 1471, 2002. 

The inner core has a density of about  15 g/cm3 . 

The outer core has a composition similar to the inner core with about 10% of sulphur, oxygen and 
other light elements. The temperature is 4000-5000 C and the density is between 10 and 12 g/cm3. 
Since the pressure is lower and it is hot, the outer core is liquid. Over geologic time, the inner core 
grows at the expense of the outer core as the whole Earth cools. The pressure is the same but the 
temperature drops and the pressure-freezing radius extends farther out. In the outer core the liquid 
metal is electrically conducting.  This conductive layer combines with Earth's rotation to create a 



dynamo effect that maintains a system of electrical currents that creates the Earth's magnetic field.
In conclusion, the Earth's magnetism is due to a combination of rotation and molten metallic core. 

3. Planetary rotations and magnetic fields.

The rotation rate of a planet and the presence of a molten core are fundamental requirements for the 
presence of a magnetic field. Here below we list the planets of th solar system and the parameters 
related to rotation and dipole axis inclination. The angle ε is the obliquity, the inclination of the 
rotation axis of the planet respect to the orbital plane, the angle α is instead the angle between the 
magnetic field axis (in dipole approximation) and the planet rotation axis. The rotation period is given 
in days for the terrestrial planets and hours for the outer planets while the magnetic moment is given as 
multiple of the magnetic moment of the Earth. For Venus the absence of a magnetic field must be 
attributed to its slow rotation while for mars it is due to the absence of  a molten core. For the outer 
planets the magnetic fiels has a more complex source that for Jupiter and Saturn may be related to the 
formation of metallic hydrogen close to the planet core. 

α  (deg) ε  (deg) P (days) MB  (in Earth's 
units) 

Mercury 10 0 58.6 4 10-4

Venus 0 177 -243 0
Earth 10.8 23.5 1 1
Mars 0 25.9 1 0
Jupiter 9.6 3.12 9.9 (hrs) 2 104

Saturn < 1 26.75 10.7 (hrs) 600
Uranus 60 97.86 -17.2 (hrs) 50
Neptune 47 29.56 16.1 (hrs) 25

4 Dipole approximation

The Earht's magnetic field is due by 
97-99% to electric currents in the 
nucleus, 1-2% to magnetized rocks 
in the crust, and 1-2% to electric 
currents around the Earth. It has a 
strongly dipole-dominated structure 
(up to 90% of the field strength) 
with the magnetic south close to the 
geographic north (see figure).  



Glatzmaier-Roberts numerically solved the  magnetohydrodynamics equations (MHD)  to model  the 
magnetic field generation in a fluid outer core surrounding a solid inner core (Glatzmaier and  Roberts, 
Phys. Earth Planet. Inter., 91, 63-75, 1995).  They were also able to reproduce the dipole field reversal  
which occurs randomly every about 250000 years. They find that the  intensity of the magnetic dipole 
moment decreases by about a factor of ten during the reversal and recovered immediately after, similar 
to what is seen in the Earth's paleomagnetic reversal record. 

Fig. 5. Timing of magnetic reversals from magnetized rocks. Dark areas denote periods where the 
polarity matches today's polarity, light areas denote periods where that polarity is reversed.

On the basis of their model they explain how convection in the fluid outer core is continually trying to 
reverse the field but that the solid inner core inhibits magnetic reversals because the field in the inner 
core can only change on the much longer time scale of diffusion. Only once in many attempts is a 
reversal successful, which is probably the reason why the times between reversals of the Earth's field 
are long and randomly distributed (Glatzmaier and Roberts, Nature, 377, 203-209, 1995).   

Fig. 6: 3D magnetic field structure simulated with the Glatzmaier-Roberts (1995) geodynamo model. 



Magnetic field lines are blue where the field is directed inward (North) and yellow where directed 
outward (South). The rotation axis of the model Earth is vertical and through the center.  The field lines 
are drawn out to two Earth radii. 

4. Magnetic dipole

The equations for a 3D magnetic dipole are:
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where m is the magnetic moment that, for a coil 
of area As passed through a current i, is defined 
as:

m=As⋅i

When dealing with the Earth's magnetic field, usually the co-latitude θ is substituted by the latitude and 
the direction of the dipole moment is directed downwards. As a consequence, the formula for a dipolar 
magnetic field changes to:
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where M B=
m
4
=7.906⋅1025 gauss /cm3  is the magnetic moment of the Earth. The filed lines can 

be derived with a simple reverse reasoning. We assume that the equation for the filed line is already 
known and it is r=r e cos 2  and we verify that the magnetic field B is tangent to this line. The 

tangent vector to the line defined by r=r e cos 2 , with re a constant, is given by:

v= ṙ err ̇er siṅ e=−2 re cos siṅ err e cos 2
̇ e=r e cos ̇−2sin ercose

in the final right end side of the equation, the vector within the  round brackets is parallel to the 
magnetic field B. This means that indeed the equation for the field line is correct. We can at this point 
compute the value of the magnetic field along a field line as:
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Motion of charged particles in the magnetic field of the Earth

The motion of charged particles trapped in the magnetic field of the Earth is multi-periodical and it can 
be studied with a perturbative approach. It can be divided in three different component: the 
gyromagnetic, drift and mirror motion. This separation is possible since the different types of motion 
have different timescales. The  gyromagnetic motion can be considered as the unperturbed motion of 
particles while the drift and the mirror motion are slow perturbations of the gyromotion.

1. The gyromagnetic motion

The equation of motion of a charge particle q under the action of  a constant magnetic field directed 
along the z-axis are derived from the Lorentz's equation of the force:

m v̇ x=q v y B
m v̇ y=qv x B

      where  B=0,0, B   and V=vx , v y , 0

to solve this equations we can derive the equation of motion once:
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ÿ=−
qB
m


2

ẋ
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Integrating back these equations we get: 
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They are the equations of uniform circular motion with frequency: 

c=
qB
m

called cyclotron frequency.  The centripetal acceleration and the radius are given by:
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where rc is the radius of the circular trajectory while v=v x
2v y

2 is the modulus of the circular 
velocity perpendicular to the magnetic field direction. Ad example, electrons moving along the 
magnetic filed lines of the Earth have an average radius of 100 m, a period of the order of the µs and a 
velocity around 106 km/s.

2. The drift motion

The drift motion of charged particles in the Earth's magnetic field is due to the curvature and gradient 
of the field and, to a lower extent, to the presence of the gravity field and a weak electric field. We list 
here below the contributions to the drift motion:

1) If the magnetic field lines are curved then:
 

v D1=m v∥
2 B×n

Rc q B2

where v∥ is the component of the particle velocity parallel to the tangent of the local magnetic field 
line and R_c is the curvature radius of the field line. 

2) If there is a non-zero field gradient, then:

v D2=
1
2

m v
2 B×∇ B

q
q B3

The sign of both vD1 and vD2 depend on the charge q. As a consequence, protons and electrons drift 
towards different directions. Electrons drift towards west while protons towards east. 

3) If there is an electric field E and a gravity field G there is a third drift velocity given by:

vD3=
E×B

B2 
m

q B2G×B

The dominant velocity component is vD1 which is proportional to v which is usually the larger 
velocity components of drifting charges. 

3. The adiabatic invariant and the mirror motion

The mirror motion can be understood in a naïve way 
by inspecting the side figure. When the field lines are 
converging and the v∥ is directed towards the 
closing lines, the Lorentz force related to the 
gyromagnetic motion presents a component which 
acts like a repelling force.  

Within a perturbative approach, we can interpret the 
mirror motion as the consequence of the 
conservation of an adiabatic invariant, the magnetic 



moment of the circling particle µ (it is called the first 
adiabatic invariant). A rotating charge is equivalent 
to a current so we can define its magnetic moment in 
the following way: 
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This is an adiabatic invariant and is conserved when the length scale of the variation of the magnetic 
field is significantly larger than the radius of the gyromagnetic motion. Then its invariance can be 
easily proved. Let's  start from the variation of the perpendicular component of the particle velocity:

d
dt
m v=q Ev×B

if we multiply both sides by v we get:
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At this point we integrate the previous formula over one complete gyromagnetic period T=
2
c
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get:
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We can apply Faradys' law and express the electric field as the variation of the magnetic field:

q∮ E⋅d l=−∫

∂B
∂ t

ds

Here  Σ is the area enclosed by a gyromagnetic orbit. Since we have assumed that the variation of B is 
small over a gyromagnetic radius, than we can approximate the 
integral on the right as:

−∫

∂B
∂ t

ds=−q
dB
dt
⋅=q

dB
dt
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Why the change in sign from the second to the third expression? 



When the line-integral is transformed into a surface integral by the Faradys' law, a convention on the 
direction of the line integral (anti-clockwise) is adopted (see side figure). However, the line integral is 
computed along the gyromagnetic motion with is clockwise (for positive charges, than the q changes 
sign). As a consequence, we have to assume that the normal n points along -z or, in altenrative, that the 
area is negative. At this point we can substitute the previously computed expression for rc  to get:
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If the magnetic field changes smoothly on time because of the motion of the particle along the fiels line 

(due to v∥ ), we can substitute T
dB
dt

 with B so that the Farady's law lead to the following 

equation: 
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From calculus we know that if 
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For this reason =

B
=0 and the magnetic moment is an adiabatic invariant for slow changes 

in time or small changes in space of the magnetic field.  The system has then two constants, µ and the 

kinetic energy  =∥=
1
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2  . When the particle moves towards a region of space where 

the field lines converge, the value of B grows. To keep µ constant, =
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expenses of  ∥=
1
2
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2 until  v∥=0 . When this limit is reached, the motion reverses and the 

particles moves towards regions where the filed lines 
are widening with increasing parallel velocity. 

This is the principle of the  magnetic bottle 
confinement.  It works also for charged particles in the 
dipolar magnetic field of the Earth. For larger values of 

the magnetic fields the radius r c=
2
qv

 decreases 

while the perpendicular velocity v= 2B
m

 

increases. 



Van Allen Belts

 The Earth's Van Allen Belts consists of highly energetic ionized particles 
trapped in the Earth's geomagnetic fields. There is a small but very dense 
inner belt extending from  about 1 to 3 Earth radii (RE)  with a mximum 
around 2 RE  consisting mainly of high energy protons (10-50 Mev) mostly 
generated by the beta decay of neutrons related to cosmic rays (CRAN) 
and by anomalous cosmic rays (ACR, ions picked up from the interstellar 
neutral gas at the heliosphere). Heavier ions like  O+ (1-00 Kev)  are also 
present  possibly produced by the interaction of the gyromagnetic particles 
with the upper atmosphere or by solar storms. Low energy e- are also 

populate the inner belt.  

The outer belt is made mostly of high-energy  e-  and 
low energetic protons (that form plasma with e- ). It 
extends from about 3 to 9 Earth radii with the center at 
about 6 Earth radii. There can be large variations due 

to solar wind storms and distortions can occur 
like that shown in the side figure  (Baker et al., 
Nature 432, 878–881, 2004) detected by 
SAMPEX mission: 

APPENDIX A: PROOF OF THE FORMULA FOR DRIFT MOTION DUE TO 
FIELD CURVATURE.

Let's start from the case where the gyromagnetic motion of a charged particle  is perturbed by an 
electric field. The configuration of the fields is such that the magnetic field B is directed along the z-
axis while the E field is constant and uniform with any direction.  The Lorentz's  force has the 
following expression:



m v̇=qEv×B

We introduce a reference frame moving with velocity vRF=
E×B

B2 . In this reference frame, the 

velocity of the charged particle is u=v−vRF=v−
E×B

B2 . Since both the fields E and B are 

constants, u̇=v̇ . In this new reference frame, we can study the trajectory of the charged particle 
since we know its equation of motion:

m u̇=m v̇=qEv×B=q Eu
E×B

B2
×B=q Eu×B

E×B×B

B2


Recalling the rules that relate the cross product of 3 vectors to the dot product of the same vectors:

A×B×C=A⋅C B−B⋅C A

we get:

m u̇=q Eu×B
E⋅BB

B2
−E =q u×BE⋅b b

where b=
B
B
=z . Let's split the velocity of the particle in a component u∥=u⋅b parallel to the z-

axis and in a component  u=∣u−u∥⋅b∣ perpendicular to the z-axis and then to the magnetic field B. 
The equation of motion can be split in two equations for each of the velocity components. For the 
parallel component we get:

m u̇⋅b=m u̇∥=q  b⋅bE⋅bu×B⋅b=q E∥

The motion along the z-axis is accelerated by the component of the electric field along the z-axis. We 
can go back to the original reference frame and compute the equation of the velocity v∥ since:

u∥=u⋅b=v⋅b−
E×b

b
=v⋅b=v∥

As a consequence, the equation for the parallel component of the velocity in the initial reference frame 
is:

v∥=
q
m

E∥tv∥0

The most interesting part is the motion in the planet perpendicular to the z-axis:

m u̇−m u̇∥b=q  b E⋅bu×B−E∥
b=q u×B=qu×B=m u̇

This equation implies that the motion in the new reference frame is a gyromagnetic motion around the 
new z-axis. In the initial reference frame it is a gyromagnetic motion with a guiding center which 



moves with a velocity v gc=v∥ b
E×B

B2 . The first term is a motion along the direction of the filed 

while the second term is the drift motion in a direction perpendicular to the field B.  Along the 
derivation of the equation for v gc we never used any relation between the magnetic and electric field, 
Maxwell's equations were never used. This implies that the derivation holds if instead of the Electric 
field we use any other force field like gravity. In this case the drift velocity would be:

v gc=vDG=
m

q B2G×B

since it is possible to make the substitution  E=
F
q
=

m
q
G  along the proof of the drift velocity. The 

same holds for the centrifugal force and this leads to the demonstration of the formula for v D1 .
If the field lines of the magnetic field B are bent, we can introduce a local reference frame with the z-
axis along the tangent to the field line. The gyromotion is supposed to follow the field line moving 
along it with the velocity v∥ .  Locally,  this is a circular motion whose center is located along the 
perpendicular direction to the local tangent of the field line and whose radius is the local curvature 
radius Rc . In a reference frame moving with v∥ along the field line the particle feels a centrifugal 
force equal to:

F cf=m
v∥

2

Rc

r=m v∥
2 Rc

R c

If we assume that this force is felt by a particle performing a gyromotion, than we can resort to the 

results for the Electric field by substituting E=
F cf
q

so that the formula for the drift is:

vD1=
F cf×B

q B2 =m v∥
2 R c×B

R c q B2=m v∥
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dove Rc=−n .

Magnetosphere of the Earth.

The interaction of the solar wind with the magnetic field of the Earth gives origin to a very complex 
environment called the magnetosphere (see figure3 below). 

The radial solar wind is deflected 
by the magnetic field lines and a 
complex structure is created 
around the planet characterized 
by complicate plasma fluxes. We 
can derive an approximate 
estimate of the average size of the 
magnetosphere and how it 
responds to changes in the solar 
wind parameters like density and 



average velocity.  We first estimate the pressure due to the solar wind particles following the lines of 
the particle-in-a-box approach for the computation of a ideal gas pressure.  The variation of the 
momentum due to a single particle of the solar wind plasma interacting with an imaginary surface 

dx⋅dy perpendicular to the Sun-Earth direction (z-axis) is:

 p=−mv

Usually,  in the kinetic theory for ideal gas  p=−2 mv since it is assumed that the gas particle 
bounces back on the same direction. In our case the particle is deflected and we can assume as a first 
approximation that the deflection occurs at 90o respect to the original velocity. As a consequence, the 
variation of momentum in the radial direction after the interaction is only  p=−mv since the 
motion after the interaction is in a direction perpendicular to the initial motion. The total force due to 
N particles interacting with the surface (N is the number of particles reaching the surface in a time dt) 
is then:

F=
 p⋅N

dt
=

N m v2

dz

The pressure is the force divided by the area of the surface so:

P=
F
A
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N mv 2

dx⋅dy⋅dz
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N m v2

V
=v2

The magnetic pressure which is the force of deflection (or radius of the induced 
gyromotion) is expressed by the formula:

P M=
B2

20

Equating the two expression for the pressure we find the radius were the two forces 
balances: 
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where MB is the magnetic dipole moment for the Earth. Solving the above equation in r 
we get an approximate value for the magnetosphere radius:

r M=
M B

2

20v2 
1
6

For average values of the solar wind density (ρ ≈ 5 p+ per cm3, v ≈ 300 km/s) we get rM ≈ 
10 RE. 




