Constraints on large DM annihilation cross sections from the early Universe

Fabío Iocco

Institut de Physique Theorique, CEA/Saclay Institut d'Astrophysique de Paris

In collaboration with: G. Bertone, M. Cirelli, S. Galli, A. Melchiorri, P. Panci

Self-annihilating DM and the IGM

The smooth DM component annihilates with a rate (per volume)

 $rac{dI}{dt}(z)=n_{DM}^2(z)\langle\sigma v
angle m_\chi c^2$

depositing energy in the gas (IGM) at a rate

$$rac{dE}{dt}(z) =
ho_c^2 c^2 \Omega_{DM}^2 (1+z)^6 f rac{\langle \sigma v
angle}{m_\chi}$$

The only DM parameter is

$$f\frac{<\sigma v>}{m_{\chi}}\equiv p_{ann}$$

About "f ", in Satyer's talk

Main effect of injected energy: heating and ionization of the IGM

[Galli et al. 09]

Structure formation "boosts" DM annihilation

Smooth component

$$A^{
m sm}(z) = rac{\langle \sigma v
angle}{2\,m_\chi^2}
ho_{
m DM,0}^2 (1+z)^6$$

Structure component

$$A^{\rm struct}(z) = \frac{\langle \sigma v \rangle}{2 m_{\chi}^2} \int \int dM \frac{dn}{dM}(z, M) (1+z)^3 (4\pi r^2 \rho_i^2(r, M(z))) dr$$

Structure formation history (Press-Schechter / Sheth-Tormen) DM density halo profile Burkert / Einasto / NFW

$$A(z) = rac{\langle \sigma v
angle}{2 \, m_\chi^2}
ho_{\mathrm{DM},0}^2 (1+z)^6 \left(1 + \mathcal{B}_\mathrm{M}(z)
ight)$$

Structure formation starts at $z \sim 150$ with minihalos of Earth mass 10⁻⁶ Msun

Structure boost: parameter dependence

Electron optical depth τ

$$\tau = -\int \underbrace{n_e(z)} \sigma_{\rm T} \frac{dt}{dz}$$

Measured with CMB polarization

Integrated quantity!

WMAP 5 value $au = 0.084 \pm 0.016$

τ constraints

(annihilation from structures can overproduce free e⁻)

To be integrated!

In this models: no astrophysical sources Extra-conservative bounds!

Temperature constraints!

Watching negative: gammas

Combining the constraints

gammas + τ

τ + IGM temperature

Down to thermal cross-section!

Concluding

Early Universe astrophysical observables can constrain DM properties

The constraints are strong, competitive with local Universe ones (astroph. uncertainties) (getting to thermal value of <σv>!!!)

Going technical

Can we reionize the Universe with DM? Yes we can!

AND it is not structures to do it: smooth, **cold** component (getting rid of astro-simulation uncertainties, too)

Einasto

NFW

Burkert

Einasto

NFW

Burkert

The Pamela(/Fermi/ATIC) saga

IF intepreted as DM:

High annih cross-section <σv> ~10⁻²⁴-10⁻²¹cm³/s Forget about thermal decoupling WIMP miracle

Unless $\langle \sigma v \rangle = \langle \sigma v \rangle (v)$ DM decoupling: $\beta \sim 1$ Recombination: $\beta \sim 10^{-8}$ Small halos: $\beta \leq 10^{-4}$ Milky Way: $\beta \sim 10^{-4}$ "Sommerfeld" enhancement fulfills the requirements (higher masses preferred)

Self-annihilating DM and the CMB

DM annihilation indirect, SZ by "additional" e⁻

z>1000 there are many e⁻ no effects Energy injection is small

Modifying TT, TE, EE with additional e⁻ (by DM annih)

[Galli et al. 09]

A little more about "f" (coupling DM induced shower to IGM)

Photoionization, IC scattering, pair production (on CMB γ and matter), γγ scattering "Opacity window" of the Universe

"f" is DM model-dependent: type of secondaries is important!

Evaluating "f"

All channels, all secondaries, redshift dependence

Branching ratio of DM annihilation essential for determining absorption

Little reminder: Pamela is leptophilic from greek: "it likes it small"

Constraining DM with CMB

Constraining SE with CMB

$$\psi^{\prime\prime}(r)-m_{\chi}V(r)\psi(r)+m_{\chi}^{2}eta^{2}\psi(r)=0$$

