

Multi³ Workshop, Padova, March 2010

2

Kaluza-Klein Modes

- Imagine adding a compact dimension of a size R to the 3+1 space-time
 - A particle propagating in this extra dimension is a classical problem of a particle in a box
 - Only quantized energy levels are allowed, with the spacing ~1/R
- From the 4-dimensional point of view, these excitations can be considered as a tower of particles with masses $M_i = \sqrt{M_0^2 + i^2/r^2}$, known as Kaluza-Klein modes of the original particle
 - This tower is truncated at a natural ultraviolet scale of the model, often the GUT scale
- Examples: large extra dimensions; Randall-Sundrum model

Multi³ Workshop, Padova, March 2010

- Coupling: g_{SM} per KK mode
- Can excite many modes at high energies, thus effectively increasing the coupling

Universal ED - Phenomenology

- The most "democratic" ED model: *all* the SM fields are free to propagate in extra dimension(s) with the size $R = 1/M_c \sim 1 \text{ TeV}^{-1}$ Appelquist, Cheng, Dobrescu [PRD **64**, 035002 (2001)]
 - Instead of chiral doublets and singlets, model contains vector-like quarks and leptons, thus solving the hierarchy problem
 - Gravitational force is not included in this model
- The number of universal extra dimensions is not fixed:
 - it's feasible that there is just one (MUED)
 - the case of two extra dimensions is theoretically attractive, as it breaks down to the chiral Standard Model and has additional nice features, such as guaranteed proton stability, etc.
- Every particle acquires KK modes with the masses $M_n^2 = M_0^2 + M_c^2$, n = 0, 1, 2, ...
- Kaluza-Klein number (n) is conserved at tree level, i.e. n₁ ± n₂ ± n₃ ± ... = 0; consequently, the lightest KK mode (usually γ₁ or Z₁) could be stable (and is an excellent dark matter candidate Cheng, Feng, Matchev [PRL 89, 211301 (2002)])
- Hence, first level KK-excitations are produced in pairs, similar to SUSY particles
- Consequently, current limits (dominated by precision electroweak measurements, particularly T-parameter) are sufficiently low (M_c ~ 300 GeV for MUED and of the same order, albeit more model-dependent for >1 ED)

Right Abundance, Cross Section Similar to a neutralino, the lightest KK particle (LKK) with ~1 TeV mass gives right DM abundance

Thursday, March 4, 2010

Greg Landsberg: Collider Searches for non-SUSY DM

UED Phenomenology

- Naively, one would expect large clusters of nearly degenerate states with masses around 1/R, 2/R, ...
- Cheng, Feng, Matchev,
 Schmaltz: not true, as radiative
 corrections tend to be large (up
 to 30%); thus the KK excitation
 mass spectrum resembles that of
 SUSY!
- Minimal UED model with a single extra dimension, compactified on an S_1/Z_2 orbifold
 - Odd fields do not have 0 modes, so we identify them w/ "wrong" chiralities, so that they vanish in the SM

• Q, L (q, I) are SU(2) doublets (singlets) and contain both chiralities

Cheng, Matchev, Schmaltz [PRD 66, 056006 (2002)]

6

Multi³ Workshop, Padova, March 2010

Greg Landsberg: Collider Searches for non-SUSY DM

Mass Spectrum and Decays

- First level KK-states spectroscopy Cheng, Matchev, Schmaltz
 - [PRD 66, 056006 (2002)]

Decay: $B(g_1 \rightarrow Q_1 Q) \sim 50\%$ $B(g_1 \rightarrow q_1 q) \sim 50\%$ $B(q_1 \rightarrow q\gamma_1) \sim 100\%$ $B(t_1 \rightarrow W_1 b, H_1^+ b) \sim 100\%$ $B(Q_1 \rightarrow QZ_1; W_1; \gamma_1) \sim 33\%; 65\%; 2\%$ $B(W_1 \rightarrow \nu L_1; \nu_1 L) = 1/6; 1/6 \text{ (per flavor)}$ $B(Z_1 \rightarrow \nu \nu_1; LL_1) \sim 1/6; 1/6 \text{ (per flavor)}$ $B(L_1 \rightarrow \gamma_1 L) \sim 100\%$ $B(\nu_1 \rightarrow \gamma_1 \nu) \sim 100\%$

 $\begin{array}{l} \text{Production:} \\ q_1q_1 + X \rightarrow \text{ME}_{\text{T}} + \text{jets} \; (\sim \sigma_{\text{had}}/4) \text{; but:} \\ & \text{Iow ME}_{\text{T}} \\ Q_1Q_1 + X \rightarrow V_1 V_1' + \text{jets} \rightarrow 2\text{-}4 \; \ell + \text{ME}_{\text{T}} \\ & (\sim \sigma_{\text{had}}/4) \end{array}$

Production Cross Section

Multi³ Workshop, Padova, March 2010

Greg Landsberg: Collider Searches for non-SUSY DM

Current Collider Limits

[Chun Lin, Ph.D. Thesis, Yale University, 2005]

- 88 pb⁻¹ of CDF Run I data in the trilepton(e/μ) + ME_T channel ("recycling" of a SUSY search)
- N.B. This is NOT an official CDF result, but it represents the only direct limits from collider searches so far

Sensitivity in the Four-Lepton Mode

- Only the gold-plated 4leptons + ME_T mode has been considered in the original paper and the subsequent studies
- Other promising channels:
 - dileptons + jets + ME_T + X (x9 cross section)
 - trileptons + jets + ME_T + X (x5 cross section)
 - Single production of the second KK excitation (via one loop)
- Detailed simulations are required: CompHEP and PYTHIA implementations now exist

Cheng, Matchev, Schmaltz [PRD 66, 056006 (2002)]

10

Multi³ Workshop, Padova, March 2010

Complementarity

- LHC generally gives stronger mass bounds on the LKP, but the sensitivity stops at low values of q₁/γ₁ splitting
- No dedicated studies on Z₁ LKP at colliders exist as of yet

S. Arrenberg, L. Baudis, K. Kong, K.T. Matchev, and J. Yoo [Phys. Rev. D 78, 056002 (2008)]

Early UED Searches in CMS

- Consider 4e, 4µ, 2e2µ channels
- Tight selection for low 1/R and looser selection for high 1/R
- Signal is found at low dilepton invariant mass and moderately high missing E_T
- Background is dominated by the physics tt background with extra lepton coming from the b decays
- Start getting into interesting region with a fraction of fb⁻¹
- The reach is being reevaluated for the 7 TeV machine energy
- Also, combination of all three channels is being pursued

Multi³ Workshop, Padova, March 2010

Greg Landsberg: Collider Searches for non-SUSY DM

30/fb

N events at 3 10⁵

10-1

ued-300

ued-500

ued-900

hhhh

77 zhh tot bke

4e

4μ 🖢 2e2u

····· Svs incl.

R⁻¹ (GeV/c²)

900

800

ME_T > 60 GeV

50 100 150 200 250 300 350 400

Other Ways of Looking for UED

- KK quarks can decay into a jet and an LKK, resulting in the dijet +ME_T topology
- Look for signal at large ME_T
- For the compactification scale as low as 1.3 TeV, only 6 pb⁻¹ is _needed; with 100 fb⁻¹ the reach up to 2.7 TeV can be achieved

Yet More Ways to find UED

- For certain cases, Kaluza-Klein gluons can decay with KK-parity violation into two heavy quarks (bb or tt)
- Reach up to the g_{KK} mass of 3.5 TeV at 100 fb⁻¹
- Challenge: at high masses, decay products of the top quark are strongly boosted; thus making it non-trivial to reconstruct the final state correctly

ATL-PHYS-PUB-2006-002

Remedies

- New techniques in jet reconstruction and b-tagging
- Work in progress at both ATLAS and CMS
- Preliminary CMS studies show that boosted top tagging efficiency can reach ~40% with a few per cent mistag rate similar to b-tagging performance!

Jet p_(GeV/c)

Multi³ Workshop, Padova, March 2010

Greg Landsberg: Collider Searches for non-SUSY DM

CMS Sensitivity in Boosted Top

- Top-tagging techniques allow to extend the reach to KK gluons in all-hadronic decay mode of the top quarks (two "fat jets")
- A different model was used as a benchmark (RS1), but the production cross section is similar
- Branching fraction into tt in this model is close to 1

Dark Photons

- New recent class of models inspired by PAMELA and ATIC excess, along with DAMA annual variation, INTEGRAL excess, WMAP haze, and EGRET excess
- Propose a light (~1 GeV) U(1) boson in the "dark sector"
 - N. Arkani-Hamed and N. Weiner [JHEP 0812, 104 (2008)]
 - N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer, and N. Weiner [Phys. Rev. D 79, 015014 (2009)]
 - M. Pospelov, A. Ritz [Phys. Lett. B 671, 391, (2009)]
- Large co-annihilation cross section due to Sommerfeld enhancement
 - Needed to explain the rates in ATIC/PAMELA
- Large leptonic branching fraction due to direct decays into pair of leptons
 - Needed to explain the positron excess

Multi³ Workshop, Padova, March 2010 Greg Landsberg: Collider Searches for non-SUSY DM

CoGeNT and Light DM

Very recent CoGeNT results can be interpreted as a signal of a ~10 GeV scalar DM particle, together with DAMA data with small fraction of "channeled" events

Collider Phenomenology - I

- Dark sector is weakly (ε) coupled to the Standard Model
- To study dark sector with colliders, one needs mechanisms to produce dark sector particles

For more details, see Y. Gershtein, Dark Forces Workshop http://www-conf.slac.stanford.edu/darkforces2009/

Multi³ Workshop, Padova, March 2010

Greg Landsberg: Collider Searches for non-SUSY DM

Collider Phenomenology - II

One further needs them to decay into SM particles

Sector

Model

<u>If</u> No Dark Decay Mode Open – Dark Sector State Can Decay Back to Standard Model Through Portals Guaranteed for LDSP if no Conserved Quantum #

<u>All, Some</u>, or <u>None</u> of the Dark Sector States May Have Prompt Decays Back to the Standard Model

Very Wide Range of Possibilities Depending On:

Production Portal

Dark Spectrum

Dark Cascade Decays

Dark Showering

Decay Portal

Multi³ Workshop, Padova, March 2010 Greg Landsberg: Collider Searches for non-SUSY DM

Dark Photon Decays

- Dark photon decays through its mixing with light photon, so its branchings can be calculated from measurement of R
- for $\epsilon > 10^{-4}$ decays are prompt

• Experimental signature: two very close leptons or hadrons

Multi³ Workshop, Padova, March 2010

Greg Landsberg: Collider Searches for non-SUSY DM

There Could be Dark Higgs... Dark Higgs Decays

- Dark Higgs should be at same scale O(GeV)
- can decay in the dark sector similarly to ours Higgs
 - if $m_h > 2m_{\gamma d}$ decay into two dark photons open
 - if $m_{\gamma d} < m_h < 2m_{\gamma d}$ decays through γ_D^* mostly through hadronic resonances
 - if m_h <m_{γd} then can decay into SM fermion pairs (possibly with very long lifetime) or stays in the dark sector

Possible Final States

Direct dark photon Drell-Yan production

swamped by background?

 very low event yield, but several mass peaks – dark photon, dark higgs, and, finally, Z itself (doable?)

Multi³ Workshop, Padova, March 2010

Rare Z decays

Benchmark Model

- Supersymmetry with conserved R-parity
 - lightest neutralino in our sector is no longer LSP
 - will decay into the dark sector
 - some of the dark states may decay back into SM
- Assuming that some dark states decay back, all SUSY signals at colliders (no matter what is SUSY phenomenology) will have those

 ψ_D

 γ_D

 $h_{\rm D}$

 γ, γ_D

 χ_1^0

 $\chi_{1^{-}}^{0}$

phenomenology may be quite striking

● Higgsino → Darkino plus Dark Higgs

- SM Singlet \rightarrow Darkino plus Photon or Dark Photon
 - every event has two isolated dark or light photons plus MET ψ_S

 $\operatorname{Br}(\psi_S \to \lambda_D \gamma) + \operatorname{Br}(\psi_S \to \lambda_D \gamma_D) \simeq 1$

Multi³ Workshop, Padova, March 2010 Greg Landsberg: Collider Searches for non-SUSY DM

Dark Showering

 Showering in the hidden sector may create even more complex signatures ("lepton jets")

M. Baumgart, C. Cheung, J. T. Ruderman, L. T. Wang and I. Yavin 0901.0283 [hep-ph]C. Cheung, J. T. Ruderman, L. T. Wang and I. Yavin 0909.0290[hep-ph]

Multi³ Workshop, Padova, March 2010

Greg Landsberg: Collider Searches for non-SUSY DM

Tevatron Search

DZero analysis, assumes SUSY and Hidden Sector

M(X) = O(GeV)assume kinematics of the decay identical to GMSB decays into gravitino

- Branchings χ_1^0 into light and dark photon are free (depend on how large is α_{dark} compared to our α .
- These two decays dominate in large fraction of parameter space
- For large Br into light photon -> identical to GMSB

Multi³ Workshop, Padova, March 2010 Greg Landsberg: Collider Searches for non-SUSY DM

Experimental Signature Dark Photon Reconstruction

Search Results

Pook for close-by pair of muons and electrons
Data agree with the SM predictions

Multi³ Workshop, Padova, March 2010

- LHC successfully started operations last year
- The machine is being commissioned for 1.5-year long 7 TeV run with ~1 fb⁻¹ of data expected by the end of 2011

- Watch for big media event at the end of this month!

- Both ATLAS and CMS pursue searches in models with hidden valleys, including the above benchmark example
 - Some signatures of hidden valleys can be pretty challenging and require special triggers, now implemented in both experiments
- Yet, there will be a long way from a discovery of an excess to DM interpretation and DM parameter determination
 - May require combination with astrophysical results and/or a dedicated machine, such as linear collider

Outlook

Conclusions

- While SUSY remains an attractive theoretical possibility and provides an excellent DM candidate, modern model-building offers viable alternatives to SUSY
- Particularly, KK DM and light Hidden Valley DM offer more flexibility in explaining recent excesses observed in several experiments
- Both these classes of models have rich phenomenology at colliders, particularly at the LHC and are being vigorously sought experimentally
- Collider searches are largely complementary to direct and indirect DM detection
- It's likely that all three approaches will need to come together to determine the true nature of DM

Multi³ Workshop, Padova, March 2010 Greg Landsberg: Collider Searches for non-SUSY DM