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Chapter 1

First passage times and escape
rates

In many problems involving stochastic processes an interesting quantity to calculate is the so called
first passage time of the process. The interest in this quantity is in its great practical applications
ranging from the estimate of the swithcing time in electronic devices to theory of chemical reaction
rate, adsorption on surfaces, optical bistability, polymer translocation, protein targeting a specific
site in DNA, extreme value statistics in finance etc etc.

Let us first restrict ourselves to 1d stochastic processes {X(t)}t≥0. Suppose that the process
is defined on Ω with boundaries that we can denote generically as ∂Ω.

If the process starts at X(0) (i.e. X(t = 0) = x0) we can ask when it will reach for the first

time the boundary ∂Ω. This is the first passage time of the process T . Clearly, being related to
a stochastic process, T is a random variables. Moreover it depends on the starting position x0

and on the chosen boundary ∂ω. To stress this point we may denote the first passage time by
T (∂Ω|x0). Being in d = 1 one can identify two important boundaries ∂Ω:

• The boundary ∂Ω = [r, ξ] where r is a reflecting point (i.e. j(r, t) = 0 and ξ is the value
of the X for which we compute the first passage. We will see that ξ is generally taken as a
absorption point (i.e. p(x = ξ, t) = 0). Note that r can be also −∞. One can also consider
the opposite case ∂Ω = [ξ, r] and r can be also +∞. In both cases T = T (∂Ω|x0) refers to
the first time at which X(t) reaches ξ. For example if ∂Ω = [r, ξ] we can write

T ([r, ξ]|x0) = sup {t ≥ 0|X(τ) < ξ, 0 ≤ τ < t} . (1.1)

An equivalent, maybe more intuitive, definition is

T ([r, ξ]|x0) = inf {t ≥ 0|X(t) = ξ} . (1.2)

• The boundary ∂Ω = [ξL, ξR]. In this case one is interested in looking at first passage time
of either boundaries and we will see that, for calculation porpouses, ξL and ξR will be both
absorption points of the process. The definition of T (∂Ω|x0) is here

T ([ξL, ξR]|x0) = sup {t ≥ 0|ξL < X(τ) < ξR, 0 ≤ τ < t} . (1.3)

or

T ([ξL, ξR]|x0) = inf {t ≥ 0|X(t) = ξLor X(t) = ξR} . (1.4)

Note. In order to mantain the discussion sufficiently general we will keep, whenever possible, the
notation ∂Ω and use the explicit notations [ξL, ξR] or [r, ξ] whenever it is required.
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Probability distribution of T (∂Ω|x0)

Since T (∂Ω|x0) is a random variable it is reasonable to look at its probability distribution T (∂Ω; t|x0)
defined as

T (∂Ω; t|x0) = P {T (∂Ω|x0) < t|X(0) = x0} (1.5)

Roughly speaking T (∂Ω; t|x0) represents tha fraction of realizations “escaped” from the region Ω
during the time interval [0, t]. The probability density function is then

pT (∂Ω; t|x0)dt = P {t ≥ T (∂Ω|x0) ≥ t+ dt|X(0) = x0} ≡ dT (∂Ω; t|x0) (1.6)

In the case of two absorbing boundaries it is sometime convenient to consider also the conditional
distribution of T ([ξL, ξR]|x0) under the condition that the absorption takes place into the barrier
ξR which we denote by T +([ξL, ξR]; t|x0)

T +([ξL, ξR]; t|x0) = P {T ([ξL, ξR]|x0) < t|T ([ξL, ξR]|x0) = T ([−∞, ξR]|x0)} (1.7)

The quantity T −([ξL, ξR]; t|x0) will denote a similar expression for the lower barrier ξL. Clearly

T ([ξL, ξR]; t|x0) = T +([ξL, ξR]; t|x0) + T −([ξL, ξR]; t|x0) (1.8)

Let us call by p+T ([ξL, ξR]; t|x0) and p−T ([ξL, ξR]; t|x0) the corresponding pdf.

Survival probability

Since T (t|x0) represents the fraction of “dead” realization in the interval [0, t] the fraction of
“survived” realization is simply 1−T (t|x0). We can then define the survival probability of the
process X(t) started in x0 and with boundary ∂Ω, the probability distribution

S(∂Ω; t|x0) ≡ 1− T (∂Ω; (t|x0) = P {T (∂Ω|x0) > t|X(0) = x0} (1.9)

Clearly
pT (∂Ω; t|x0)dt = d (1− S(∂Ω; t|x0)) = −dS(∂Ω; t|x0) (1.10)

Hence

pT (∂Ω; t|x0)dt = − ∂

∂t
S(∂Ω; t|x0)dt. (1.11)

Moments of the distribution T (t|x0)

In what follows let us omit, for simplicity, the explicit dependence on the boundary ∂Ω. The first
moment or mean first passage time (MFPT) is defined as

E {T (x0)} ≡ T (1)(x0) =

∫ ∞

0

tpT (t|x0)dt = −
∫ ∞

0

t
∂

∂t
S(t|x0)dt. (1.12)

Similarly,

E {T (x0)
m} ≡ T (m)(x0) =

∫ ∞

0

tmpT (t|x0)dt = −
∫ ∞

0

tm
∂

∂t
S(t|x0)dt. (1.13)

If we integrate the last equation by parts we get

T (m)(x0) = tmS(t|x0) |∞0 +

∫ ∞

0

tm−1S(t|x0)dt. (1.14)

Since S(0|x0) = 1 forall x0 limt→0 t
mS(t|x0) = 0. The other extreme is more delicate: clearly

S(t|x0) → 0 as t → ∞ but one has to see how rapidly this occurs with respect to tm. If, for fixed
m, S(t|x0) ∼ 1/tm+ǫ as t → ∞ we can safely assume limt→∞ tmS(t|x0) = 0. If this is true we
finally have



3

T (m)(x0) = m

∫ ∞

0

tm−1S(t|x0)dt. (1.15)

In particular, for the MFPT we have

T (1)(x0) =

∫ ∞

0

S(t|x0)dt. (1.16)

Relation with p(x, t|x0, 0)

Given the stochastic process X(t) we recall the definition of its conditional probability density
p(x, t|x0, 0):

p(x, t|x0, 0)dx = P {x ≤ X(t) ≤ x+ dx|X(0) = x0} . (1.17)

If we consider the more stringent conditional probability density

p∂Ω(x, t|x0, 0) = P {x ≤ X(t) ≤ x+ dx,without ever reached ∂Ω in (0, t)|X(0) = x0} (1.18)

it is easy to understand

S∂Ω(t|x0) =

∫

Ω

p∂Ω(x, t|x0, 0)dx. (1.19)

The problem is to find a way to relate p(x, t|x0, 0) with p∂Ω(x, t|x0, 0). This is simply done by
using the appropriate boundary conditions.

• In the case ∂Ω = [r, ξ] (i.e. for Tξ(t|x0)) p∂Ω(x, t|x0, 0) is p(x, t|x0, 0) with absorbing BC in
x = ξ (i.e. p(x = ξ, t|x0, 0) = 0) and refecting or natural in r (i.e. j(x = r, t|x0, 0) = 0).

• If ∂Ω = [ξL, ξR] (i.e. for TξL,ξL(t|x0)), p∂Ω(x, t|x0, 0) is p(x, t|x0, 0) with absorbing BC in
x = ξL and x = ξR (i.e. p(x = ξL, t|x0, 0) = p(x = ξL, t|x0, 0) = 0.

The above correspondence suggests another random variable related to first time passage prob-
lems and useful to describe extreme value statistics

Case I : ∂Ω = [r, ξ]

Z(t|x0) = max {X(τ), 0 ≤ τ ≤ t} . (1.20)

The variable Z(t|x0) gives the maximum value reached by X(t) within the interval [0, t] and

S(ξ, t|x0) =

∫ ξ

r

pr,ξ(x, t|x0, 0)dx = P {Z(t|x0) < ξ|X(0) = x0} (1.21)

Clearly if we are interested in minima values we should consider ∂Ω = [ξ, r] with r that can
be also +∞.

Case II: ∂Ω = [ξL, ξR]
If ξL = −ξR = −ξ and interesting random variable is

Y (t|x0) = max {|X(τ)| < ξ, 0 ≤ τ ≤ t} . (1.22)

and

S(ξ, t|x0) =

∫ ξ

−ξ

p−ξ,ξ(x, t|x0, 0)dx = P {−ξ < Y (t|x0) < ξ|X(0) = x0} (1.23)
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Note that for convenience we have moved ξ from the subscript position to stress the fact the now
ξ can be seen as a variable of the problem. In other words the survival probability of the first
passage time is here the probability distribution of the variables Z or Y . The relative PDF is then

ps(ξ, t|x0)dξ =
∂

∂ξ
S(ξ, t|x0)dξ = P {ξ < Z(t) < ξ + dξ|X(0) = x0} (1.24)

As for the first passage time we can define the moments of the distribution for Z as

E {Z(t|x0)
m} ≡ Z(m)(t|x0) =

∫ ∞

r

ξmps(ξ, t|x0)dξ (1.25)

and an integration by parts gives

Z(m)(t|x0) = rm +m

∫ ∞

r

ξm−1(1− S(ξ, t|x0)dξ (1.26)

Similarly

Y (m)(t|x0) =

∫ ∞

0

ξmps(ξ, t|x0) = m

∫ ∞

r

ξm−1(1− S(ξ, t|x0)dξ (1.27)

Unconditioned statistics

All the quantity above are conditioned to value of the initial condition x0. To remove this condition
and consider the unconditioned statistics of the problems we have to integrate over the initial
distribution p0(x0). This gives for example

S(ξ, t) =

∫ ξ

r

S(ξ, t|x0)p0(x0)dx0

= P {T (ξ) > t} = P {Z(t) < ξ} (1.28)

and

pT (ξ, t) =

∫ ξ

r

pT (ξ, t|x0)p0(x0)dx0 = − ∂

∂t
S(ξ, t). (1.29)

1.1 First passage time for continuous Gaussian Markov pro-
cesses

If we restrict ourselves to continuous Gaussian Markov processes, we know that the conditioned
probability density fuction of the process p(x, t|x0, 0) is a solution of the general Fokker-Planck
equation

∂

∂t
p(x, t|x0, 0) =

∂

∂x

[

−D(1)(x, t)p(x, t|x0, 0) +
1

2

∂2

∂x2

[

D(2)(x, t)p(x, t|x0, 0)
]

]

(1.30)

with the initial condition p(x, t → 0|x0, 0) = δ(x−x0) and boundary conditions appropriate to the
problem considered (see above when the relevant quantities of the first passage time problem have
been introduced). We have previously seen that often it is convenient to write the FP equation in
terms of the FP differential operator

∂

∂t
p(x, t|x0, 0) = L̂FP (x, t)p(x, t|x0, 0), (1.31)

or as continuity equation
∂

∂t
p(x, t|x0, 0) +

∂

∂x
j(x, t|x0, 0) = 0. (1.32)
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where

j(x, t|x0, 0) = D(1)(x, t)p(x, t|x0, 0)−
1

2

∂

∂x

[

D(2)(x, t)p(x, t|x0, 0)
]

(1.33)

is the current density. By integrating both terms of the last equation on Ω it is possible to express
the mean first passage time T (1)(x0) (MFPT) in term of the current density:

∂

∂t
S(t, |x0) = −

∫

Ω

∂

∂x
j(x, t|x0, 0)dx = j(x, t|x0, 0) |∂Ω (1.34)

Hence the mean first passage time can be written as

T (1)(∂Ω, x0) = −
∫ ∞

0

t
∂

∂t
S(t|x0)dt =

∫ ∞

0

t [j(x, t|x0, 0) |∂Ω ] dt (1.35)

A renewal equation

For continuous Markov process it is possible to write an integral equation relating the pdf pT ([−∞, ξ]; t|x0)
with the conditional probability p(x, t|x0, t0). Since the process has no memory if x > z > x0 we
can look at the total paths going from x0 to x as the convolution between the paths that, starting
from x0, reach an intermediate position z within the interval [τ, τ+dτ ] and the paths that starting
at x = z they will end up between [x, d+dx] at time t. If we denote by pT (τ |x0) as the probability
that the process in the interval [τ, τ + dτ ] reaches z and by p(x, t− τ |z) as the probability of the
process to be at [x, x+ dx] at time t− τ being started at x = z, we have

p(x, t|x0, t0) =

∫ t

0

pT ([−∞, ξ]; τ |z)p(x, t− τ |z, τ)dτ. (1.36)

at t the process, being started at x = x0 is between [x, x + dx] as the sum of all the paths that
starting from x0 For the case in which ∂Ω = [ξL, ξL] we can similarly see that

pT ([−∞, ξR]; t|x0) = p+T ([ξL, ξR]; t|x0) +

∫ t

0

p−T ([ξL, ξR]; τ |x0)pT ([−∞, ξR]; t− τ |ξL)dτ

pT ([ξL,∞]; t|x0) = p−T ([ξL, ξR]; t|x0) +

∫ t

0

p+T ([ξL, ξR]; τ |x0)pT ([ξL,∞]; t− τ |ξR)dτ

(1.37)

Hitting probability

Consider a stochastic processX(t) such thatX(0) = x0 and that evolves within a domain Ω = [r, ξ]
where r is a reflecting boundary that can be also −∞. One could be interested in computing the
hitting probability to the point ξ. According to Eq. (2.17) we can solve this problem by first
computing the outgoing flux at ξ

j(ξ, t|x0, 0) = −D
∂p(x, t|x0, 0)

∂x
|x=ξ . (1.38)

The hitting probability at ξ is then given by

H(ξ|x0, 0) =

∫

R+

j(ξ, t|x0, 0)dt. (1.39)

1.1.1 PDE for the evolution of S(t|x0)

It is important to stress that it is not necessary to know the conditional probability p(x, t|x0, 0) to
compute S(t|x0). Sometimes it is more convenient to solve a PDE equation directly for S(t|x0).
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In order to do that we need the backward Fokker-Planck equation i.e. the equation

∂

∂t
p(x, t|x0, 0) = L̂†

FP (x0)p(x, t|x0, 0) (1.40)

where L̂†
FP (x) is the adjoint of the Fokker-Planck operator. It is easy to see that in 1d the adjoint

operator is given by

L̂†
FP (x) = D(1)(x)

∂

∂x
+D(2)(x)

∂2

∂x2
(1.41)

Note that we have omitted the case in which there is an explicit time dependence in L̂FP

At this point we can derive a PDE for the survival probability S(t, |x0) by simply integrating
eq. (??) over x. This gives

∂tS(t|x0) = L̂†(x0)S(t|x0). (1.42)

The boundary conditions depend on the kind of first passage time problem we are considering. If
we consider ∂Ω = [r, ξ] then S(t|x0 = ξ) = 0 and ∂x0

S(t|x0)|x0=r = 0 are the correct BC. If, on
the other hand, we consider ∂Ω = [ξL, ξR] the BC are S(t|x0 = ξL) = S(t|x0 = ξR) = 0.

1.1.2 ODE for the MFPT

To obtain a differential equation for T (1)(x0) it is sufficient to integrate eq. (1.42) over all time.
Indeed, since

∫

R+

(∂/∂t)S(t|x0) = S(∞|x0)− S(0|x0) = −1, (1.43)

one gets the following ODE for the MFPT

L̂†
FP (x0)T

(1)(x0) = −1. (1.44)

Below we will present some examples in which the above equation can be solved analytically.
Since one of the most used technique involves the Laplace transform let us look at some useful
realation one can get in this space.

1.1.3 Laplace transform

In many situations it is convenient to perform a Laplace transform in the time variable. For
example it could be interesting to look at the Laplace transform of the pdf for the first passage
time pT (∂Ω; t|x0):

LpT (∂Ω; t|x0) ≡ p̂T (∂Ω; s|x0) =

∫

R+

pT (∂Ω; t|x0)e
−stdt. (1.45)

Similarly we can define

LS(∂Ω; t|x0) ≡ ŜT (∂Ω; s|x0) =

∫

R+

S(∂Ω; t|x0)e
−stdt. (1.46)

By performing a Laplace transform of equation (1.11) we get the useful relation

≡ p̂T (∂Ω; s|x0) = −L [] = −sLS(∂Ω; t|x0) + S(∂Ω; t = 0|x0) = −sŜT (∂Ω; s|x0) + 1. (1.47)

If we now take the Laplace transform of eq. (1.42) and use eq. (1.47) we get

p̂T (∂Ω; s|x0) = L̂†(x0)LS(∂Ω; t|x0) = L̂†(x0)

(

p̂T (∂Ω; s|x0)− 1

s

)

=
1

s
L̂†(x0) (1− p̂T (∂Ω; s|x0)) (1.48)
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giving

L̂†(x0)p̂T (∂Ω; s|x0)− sp̂T (∂Ω; s|x0) = 0 (1.49)

i.e. a differential equation for the Laplace transform of the pdf of the first passage time. The
knowledge of p̂T (∂Ω; s|x0) allows also to compute the moments of the distribution. Indeed, since

T (m)(∂Ω, x0) =

∫

R+

tmpT (∂Ω; t|x0)dt, (1.50)

it is easy to see that

T (m)(∂Ω, x0) = (−1)m
(

dmp̂T
dsm

)

s=0

. (1.51)

In particular for the mean and the variance we have

T (1)(∂Ω, x0) = −
(

dp̂T
ds

)

s=0

(1.52)

V ar (T (∂Ω, x0)) =

(

d2p̂T
ds2

)

s=0

−
[

(

dp̂T
ds

)2

s=0

]

. (1.53)

It is important to notice that if we take the Laplace tranform of the renewal equation (1.36)
we get

p̂(x, s|x0, t0) = p̂T ([−∞, ξ]; s|x0)p̂(x, s|z) x > z > x0. (1.54)

The last equation suggests that p̂(x, s|x0, t0) is a function of x0 times a function of x, say
u(x0)u1(x). Hence p̂T ([−∞, ξ]; s|x0) = u(x0)/u(z). Similarly, for x < z < x0 we get p̂T ([−∞, ξ]; s|x0) =
v(x0)/v(z). This is a nice results that can be stated more precisely

Proposition 1.1.1. If the processX(t) is a Markov continuous process then the Laplace tranforms
p̂(x, s|x0, t0) and p̂T ([−∞, ξ]; s|x0) are given by the products

p̂(x, s|x0, t0) =

{

u(x0)u1(x) x > x0

v(x0)v1(x) x < x0
(1.55)

and

p̂T ([−∞, ξ]; s|x0) =

{

u(x0)u(ξ) x < ξ
v(x0)v(ξ) x > ξ

(1.56)

A similar result can be obtained by performing the Laplace transform of eq.s (1.37)

p̂T ([−∞, ξR]; s|x0) = p̂+T ([ξL, ξR]; s|x0) + p̂−T ([ξL, ξR]; s|x0)p̂T ([−∞, ξR]; s|ξL)
p̂T ([ξL,∞]; s|x0) = p̂−T ([ξL, ξR]; s|x0) + p̂+T ([ξL, ξR]; s|x0)p̂T ([ξL,∞]; s|ξR)

(1.57)

Eqs. (1.57) are 2 linear equations in 2 unknowns. By using the expressions of (1.56) for p̂+T ([ξL, ξR]; s|x0)
and p̂−T ([ξL, ξR]; s|x0) one gets the results

p̂−T ([ξL, ξR]; s|x0) =
v(ξL)u(x0)− u(ξL)v(x0)

u(ξR)v(ξL)− u(ξL)v(ξR)
(1.58)

p̂+T ([ξL, ξR]; s|x0) =
v(x0)u(ξR)− u(x0)v(ξR)

u(ξR)v(ξL)− u(ξL)v(ξR)
(1.59)

(1.60)

Moreover, since p̂T ([ξL, ξR]; s|x0) = p̂+T ([ξL, ξR]; s|x0) + p̂−T ([ξL, ξR]; s|x0), we have

p̂T ([ξL, ξR]; s|x0) =
v(x0) (u(ξR)− u(ξL))− u(x0) (v(ξR)− v(ξL))

u(ξR)v(ξL)− u(ξL)v(ξR)
(1.61)
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Symmetrical process

Note that if the process is symmetrical i.e. if p(x, t|x0, t0) = p(−x, t| − x0, t0), for all x, x0, t, then
u(x0) = −v(x0) and if we consider ξL = −ξR = −ξ the relation above simplifies to

p̂T ([−ξ, ξ]; s|x0) =
u(x0) + u(−x0)

u(ξ) + u(−ξ)
. (1.62)

At this point we can state the following general result.

Proposition 1.1.2. If the conditional probability p(x, t|x0, t0) satisfies the backward Fokker-
Planck equation (1.40) with the given boundary conditions, than the functions u(x0) and v(x0)
can be chosen as any two linearly indipendent solutions of the differential equation

L̂†(x0)w(x0)− sw(x0) = 0 (1.63)

1.1.4 Standard procedures to compute the MFPT: a summary

From the previous sections we have seen that the computation of the MFPT can be performed
according to (at least) three possible routes:

(i) By computing the distribution function p(x, t|x0, t0), then the survival probability S(t|x0)
through the relation

S(t|x0) =

∫

Ω

p(x, t|x0, t0)dx (1.64)

and finally the MFPT through the relation

T (1)(x0) =

∫

R+

S(t, |x0)dt. (1.65)

This route is certantly the most complete one since it requires the computation of the full
pdf p(x, t|x0, t0) first. Given p(x, t|x0, t0) the full survival probability is obtained by a simple
integration over the whole space and from that all the moments T (m)(x0) can be computed.
The problem of this procedure is that, in general, the computation of p(x, t|x0, t0) is not an
easy task to perform. We have indeed previously seen that sometimes one has to stop at a
complicated expression of the Laplace transform of p(x, t|x0, t0) that is difficult to invert.

(ii) By solving the PDE ( 1.42) with the corresponding boundary conditions for the survival
probability S(t|x0) and then use eq. (1.65) to compute T (1)(x0). Note that also in this case
one can get all the moments Tn(x0). As in the case of procedure [i], the computation of
S(t|x0) is not, in general an easy task to perform and is some case one has to study the
asymtptotic properties of its Laplace transform S(s|x0).

(iii) By solving the ODE ( 1.44) for the MFPT. This is in principle the simplest way to compute
T (1)(x0) since it requires to find the solution of an ordinary differential equation. The
drawback of this procedure is that only T (1)(x0) is accessible. For example one cannot get the

full survival probability but only its relaxation time approximation Sappr(t|x0) ≃ e−t/T (1)(x0)

In the next examples we will try to compute the MFPT by following all (of some of) the procedure
just mentioned.

1.1.5 MFPT for 1d diffusive processes in a finite region

As a first example let us consider the Wiener process defined on the region x ∈ [0, L] i.e.

∆x = 2D1/2∆W. (1.66)

This problem corresponds to a random walk with diffusion constant D. For this process one can
find the mean first passage time for the exit through either x = 0 or x = L from an initial position
x(t0) = x0.
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MFPT from route [i]

Following this approach we need the full solution for the probability p(x, t|x0, t0) found in section ??
of the previous Chapter:

p(x, t|x0, t0) =
2

L

∞
∑

n=1

sin
(nπ

L
x
)

sin
(nπ

L
x0

)

e−Dλ2
n(t−t0), (1.67)

where

λ2
n =

(nπ

L

)2

(1.68)

The survival probability S(t|x0) can be obtained from the above solution by simply integrating
over the whole domain:

S(t, x0) =

∫ L

0

p(x, t|x0, t0)dx (1.69)

Note that, since the variables x and t are separated in p(x, t|x0, t0), this integration is not going
to change the time-dependent factor. Hence the time-dependence of the survival probability
must correspond to the one found for p(x, t|x0, t0). Since the large-n terms in p(x, t|x0, t0) decay
more rapidly with time, in the long time limit (i.e. t >> L2/D) only the term with the largest
characteristic decay time remains. One can then assume

S(t|x0) ∼ e−
π2D(t−t0)

L2 ∼ e−t/τ (1.70)

The characteristic decay time τ of the survival probability in the long time limit is the MFPT of
the process since

T (1)(x0) ∼
1

τ

∫

R+

te−t/τdt = τ. (1.71)

If one is not only interested in the long time limit but in the full expression for T (1)(x0) it is
convenient to insert the full solution in the definition of the first passage time distribution function

−dS(t|x0) =

(

−
∫ L

0

∂tp(x, t|x0, t0)dx

)

dt. (1.72)

This gives

−dS(t|x0)

dt
=

∫ L

0

∞
∑

n=1

Dλ2
n

2

L
sin
(nπ

L
x
)

sin
(nπ

L
x0

)

e−Dλ2
n(t−t0)dx

=

∞
∑

n=1,n,odd

2Dλ2
n

L

2L

nπ
sin
(nπ

L
x0

)

e−Dλ2
n(t−t0). (1.73)

The first moment of −dS(t|x0) gives the MFPT

T (1)(x0) = −
∫ ∞

t0

tdS(t|x0) =

∞
∑

n=1,n,odd

Dλ2
n

L

4L

nπ
sin
(nπ

L
x0

)

∫ ∞

t0

te−Dλ2
n(t−t0)dt

=
∞
∑

n=1,n,odd

4

Dλ2
nnπ

sin
(nπ

L
x0

)

=

∞
∑

n=1,n,odd

4L2

Dn3π3
sin
(nπ

L
x0

)

. (1.74)

This is a Fourier series that converges to give a value for T (1)(x0).



10 First passage times and escape rates

A different approach

Suppose the process X(t) is defined over the interval [−ξ, ξ]. Since it is a diffusive process the
conditional probability satisfies the backward differential equation

∂tp =
1

2

∂2p

∂x2
0

(1.75)

By performing a Laplace transform we get eq. (1.63) that in this case becomes

1

2

d2

dx2
0

w(x0)− sw(x0) = 0. (1.76)

Two linearly independent solutions are

u(x0) = e−x0

√
2s, v(x0) = ex0

√
2s = u(−x0) (1.77)

and from eq. (1.62) we get

p̂T ([−ξ, ξ]; s|x0) =
coshx0

√
2s

cosh ξ
√
2s

, |x0| < ξ. (1.78)

The inversion of the Laplace transform gives

pT ([−ξ, ξ]; t|x0) =
π

ξ2

∞
∑

j=0

(−1)j(j + 1/2) cos

[

(j + 1/2)
πx0

ξ

]

e−(j+1/2)2π2t/(2ξ2) (1.79)

By integrating on t we get the probability distribution

P([−ξ, ξ]; t|x0) = P {T ([−ξ, ξ]|x0) < t}

= 1− 2

π

∞
∑

j=0

(−1)j

(j + 1/2)
cos

[

(j + 1/2)
πx0

ξ

]

e−(j+1/2)2π2t/(2ξ2). (1.80)

This result can be also extended to general ∂Ω since we can always write [ξL, ξR] as [−(ξR −
ξL)/2, (ξR − ξL)/2] giving

P([ξL, ξR]; t|x0) = P ([−(ξR − ξL)/2, (ξR − ξL)/2]; t|x0 − (ξL + ξ +R)/2) . (1.81)

MFPT from route [ii]

In this case the problem consists in solving the PDE

∂

∂t
S(t|x0) = L̂†(x0)S(t|x0) = D

∂2

∂x2
0

S(t|x0) (1.82)

with boundary conditions

S(t|0) = S(t|L) = 0. (1.83)

and initial condition S(t0|x0) = 1.

Exercise. Solve equation (1.82) either by using the separation of variables method or the Laplace
transform.
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MFPT from route [iii] and Sapp(t|x0)

Following route [iii] we have to solve the ODE for the T (1)(x0):

L̂†
x0
T (1)(x0) = −1 ↔ D

d2T (1)(x0)

dx2
0

= −1, (1.84)

with boundary conditions T (1) = 0 at x0 = 0 and x0 = L. A possible solution is given by the
homogeneous solution Ax0 +B and the non-homogeneous one −x2

0/2D. Hence

T (1)(x0) = − 1

2D
x2
0 +Ax0 +B. (1.85)

The boundary conditions give

B = 0 and A =
1

2D
L. (1.86)

The MFPT is then

T (1)(x0) =
1

2D
x0(L− x0). (1.87)

It is easy to see that (1.74) is the Fourier series of this function. Note that if L = ∞ the MFPT
is infinite. Given T (1)(x0) one can approximate the survival probability S(t|x0) as

Sapp(t|x0) ∼ exp
(

−t/T (1)(x0)
)

. (1.88)

1.1.6 Escape from a symmetric barrier: Kramer’s formula

Consider a Brownian particle in symmetric potential U(x) = U(−x). This will give rise to a drift
velocity v(x) = −µdU

dx where µ = D/kBT is the mobility and D the diffusion constant. Suppose
the potential has a minimum U = 0 at x = 0 with U ′′(0) > 0 and a two equal maxima U = E > 0
at x = ±xM with U ′′(xM ) < 0. If the particle starts at the origin compute the mean first passage
time T (1)(0) to reach one of the barriers at x = ±xM (and the escape from the well with probability
1/2). In particular We first derive the general formula

T (1)(0) =
1

D

∫ xM

0

dxeU(x)/kBT

∫ x

0

dye−U(y)/kBT (1.89)

In the over-damped limit the Fokker-Planck equation for a Brownian particle in an external
field F (x) = −U ′(x) is given by the Smoluchowsky equation (??)

∂

∂t
p(x, t|0, 0) = D

kBT

∂

∂x
(U ′(x)p(x, t|0, 0)) +D

∂2

∂x2
p(x, t|0, 0) (1.90)

where in (??) we have made the following changes: U ′(x) = F (x), D = σ2

2γ2m2 and 1
γm = D

kBT .

Looking for the fundamental solution we consider the initial condition p(x, 0) = δ(x). Moreover
the BC are absorbing at the exit points, i.e. p(±xM , t|0, 0) = 0. Following eq. (??) We can write
the Smoluchowskii equation in the form

∂

∂t
p(x, t|0, 0) = L̂FP (x)p(x, t|0, 0) (1.91)

where

L̂FP (x) = D
∂

∂x

[

e−U(x)/kBT ∂

∂x

(

eU(x)/kBT
)

]

. (1.92)

By applying the operator L̂FP (x) on both sides of the relation for g0(x|x0) we get

L̂FP (x)g0(x|0) =
∫ ∞

0

L̂FP (x)p(x, t|0, 0)dt =
∫ ∞

0

∂p

∂t
dt = −p(x, 0|0, 0) = −δ(x). (1.93)
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Using expression (1.92) for L̂FP it is easy to solve for g0(x, 0) giving

g0(x|0) =
e−U(x)/kBT

D

∫ xM

−xM

eU(y)/kBT

[
∫ y

0

δ(z)dz

]

dy (1.94)

The MFPT (or escape time) is then given by

T (1)(0) =

∫ xM

−xM

g0(x|0)dx = 2

∫ xM

0

g0(x|0)dx

=
1

D

∫ xM

0

e−U(x)/kBT

[
∫ xM

−xM

eU(y)/kBT dy

]

dx (1.95)

By performing a partial integration and remembering that U(0) = 0, U ′(0) = 0 we get

T (1)(0) =
1

D

[(
∫ x

0

e−U(y)/kBT dx

)

×
(
∫ xM

x

eU(y)/kBT dy

)]xM

0

+
1

D

∫ xM

0

eU(x)/kBT

[
∫ x

0

e−U(y)/kBT dy

]

dx (1.96)

Hence

T (1)(0) =
1

D

∫ xM

0

dxeU(x)/kBT

∫ x

0

dye−U(y)/kBT (1.97)

Let us now consider the low kBT limit. As kBT → 0 the integrals in the formula are dominated
by the extreme values of the exponents. We can then use the saddle point approximation to the
evaluate the integrals as follows:

∫ x

0

e−U(y)/kBT dy ∼ 1

2

√

2πkBT

U ′′(0)
e−U(0)/kBT =

√

πkBT

2U ′′(0)
(1.98)

Hence

∫ xM

0

dxeU(x)/kBT

∫ x

0

dye−U(y)/kBt ∼
√

πkBT

2U ′′(0)

∫ xM

0

eU(x)/kBT dx

∼
√

πkBT

2U ′′(0)

1

2

√

− 2πkBT

U ′′(xM )
eU(xM )/kBT . (1.99)

Finally, the mean-first passage time in the limit kBT → 0, is, at zero order:

T (1)(0) =
πkBT

2D
√

U ′′(0)U ′′(xM )
eU(xM )/kBT ∝ eU(xM )/kBT (1.100)

In general

T (1)(0) =
πkBT

2D
√

U ′′(xxmain)|U ′′(xmax)|
e∆U/kBT (1.101)

where ∆T = U(xmax −U(xmin). Equation above is known as Kramer’s formula. Sometimes it
is written in terms of the escape rate R:

R = 1/T (1)(0) =
2D
√

U ′′(xmin)|U ′′(xmax)|
πkBT

e−∆U/kBT . (1.102)
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It is possible to improve the saddle point approximation and computing the first correction to
the leading term. This can be done imply to keeping one term in the expansion of the exponential.
In order to do this let us consider the relation

∫

R

e−ax2+bx3+cx4

dx ∼
∫

R

(

1 + bx3 + cx4 +
b2x6

2

)

e−ax2

dx

=

√

π

a

(

1 +
3c

4a2
+

15b2

16a3

)

. (1.103)

We now use again the saddle point approximation with the above formula

∫ x

0

e−U(y)/kBT dy ∼ 1

2

√

2πkBTU
′′(0)

(

1− kBTU
(IV )(0)

8(U ′′(0))2
+

5kBT (U
III(0))2

(U ′′(0)3)

)

e−U(0)/kBT

(1.104)
On the other hand the well is symmetric and U III(0) = giving

∫ x

0

e−U(y)/kBT dy ∼
√

πkBT

2U ′′(0)

(

1− kBTU
(IV )(0)

8(U ′′(0))2

)

(1.105)

Similarly

∫ xM

0

eU(x)/kBT dx ∼ 1

2

√

−2πkBTU
′′(xM )

(

1 +
kBTU

(IV )(xM )

8(U ′′(xM ))2
− 5kBT (U

III(xM ))2

(U ′′(xM )3)

)

eU(xM )/kBT

∼
√

πkBT

2U ′′(xM )

(

1 +
kBTU

(IV )(xM )

8(U ′′(xM ))2
− 5kBT (U

(III)(xM ))2

24(U ′′(xM ))3

)

(1.106)

We finally have

T (1)(0) ∼ 1

R0(T )

(

1− kBTU
(IV )(0)

8U ′′(0)2

)(

1 +
kBTU

(IV )(xM )

U ′′(xM )2
− 5kBTU

(III)(xM )2

24U ′′(xM )3

)

∼ 1

R0(T )

[

1 +
kBT

8

(

U (IV )(xM )

(U ′′(xM )2)
− U (IV )(0)

(U ′′(0))2
− 5(U (III)(xM ))2

3(U ′′(xM ))3

)]

(1.107)

Hence

R(T ) ∼ R0(T )

[

1− kBT

8

(

U (IV )(xM )

(U ′′(xM )2)
− U (IV )(0)

(U ′′(0))2
− 5(U (III)(xM ))2

3(U ′′(xM ))3

)]

(1.108)

1.2 First passage problem for a 1d overdamped motion with
external (periodic) potential

Let us now consider the 1D overdamped Brownian motion for a particle subject to an external
potential V (x) than later we will specify to be periodic or tilted periodic. The Smoluchowski
equation is

∂tp(x, t|x0, t0) = L̂FP (x)p(x, t|x0, t0) (1.109)

with

L̂FP (x) =
∂

∂x

{

D(x)e−βV (x) ∂

∂x
eβV (x)

}

. (1.110)

Note that, in order to keep the problem as much general as possible, we consider the diffusion
coefficient to be a function of x. According to our previous results the adjiont operator is

L̂†(x) = eβV (x) ∂

∂x

{

∂

∂x
e−βV (x)

}

. (1.111)
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and the differential equation for the mean first passage time for a process starting at x0 is

L̂†(x)T (1)(x0) = −1 (1.112)

i.e.
∂

∂x0

{

D(x0)e
−βV (x0)

∂

∂x0

}

T (1)(x0) = −e−βV (x0). (1.113)

By integrating on both side

D(x0)e
−βV (x0)

∂

∂x0
T (1)(x0) = −

∫ x0

a

e−βV (z)dz + C1 (1.114)

where a is an arbitrary point in the domain [ξL, ξR]. In the specific we will consider the motion
in the region Ω = [−∞,∞] where we have reflecting boundary consitions at the extremities. On
the other hand, if we want to look at the mean first passage problem for the particle to reach the
point x = b starting from an initial point x0 < b, it is convenient to restrict the motion to the
subregion [−∞, b] where x = −∞ is reflecting and x = b is absorbing. In this case the constant C1

is determined by imposing that the boundary at x = −∞ is reflecting: dT (1)(x0)/dx0|x0→−∞ = 0.
Hence

C1 =

∫ −∞

a

e−βV (z)dz (1.115)

and by plugging back

∂

∂x0
T (1)(x0) =

eβV (x0)

D(x0)

{

−
∫ x0

a

e−βV (z)dz +

∫ −∞

a

e−βV (z)dz

}

(1.116)

i.e.
∂

∂x0
T (1)(x0) = −eβV (x0)

D(x0)

∫ x0

−∞
e−βV (z)dz. (1.117)

By integrating again on both sides

T (1)(x0) = −
∫ x0

a

eβV (y)

D(y)
dy

∫ y

−∞
e−βV (z)dz + C2. (1.118)

If we look at the mean first passage time for the system to reach point b, starting from the initial
condition x0 an obvious condition is T (1)(x0 = b) = 0 i.e.

−
∫ b

a

eβV (y)

D(y)
dy

∫ y

−∞
e−βV (z)dz + C2 = 0 (1.119)

C2 =

∫ b

a

eβV (y)

D(y)
dy

∫ y

−∞
e−βV (z)dz (1.120)

Finally

T (1)(x0 → b) =

∫ b

x0

eβV (y)

D(y)
dy

∫ y

−∞
e−βV (z)dz. (1.121)

Moreover, from the general recursive relation,

L̂†
FP (x0)T

(m)(x0) = −mT (m−1)(x0) (1.122)

one obtains

T (m)(x0 → b) = m

∫ b

x0

eβV (y)

D(y)
dy

∫ y

−∞
e−βV (z)T (m)(z → b)dz. (1.123)

with T (0)(y → b) = 1.
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1.2.1 Periodic potential

Suppose V (x) is periodic: V (x+L) = V (x) or tilted periodic V (x+L) = V (x)+FL. In this case
some semplification are possible for the integral

I(y) ≡ eβV (y)

D(y)

∫ y

−∞
e−βV (z)dz. (1.124)

TODO

1.3 First passage problem for Ornstein-Uhlenbeck processes

Let us consider the most general O-U process defined by the following SDE

dY (t) = (−γY (t) + µ)dt+ σdW (1.125)

where dW is the increment of the usual Wiener process. To remove the constant µ from the
process it is sufficient to consider the stochastic process X(t) defined as

X(t) = Y (t)− µ/γ (1.126)

giving
dX(t) = −γX(t)dt+ σdW (1.127)

The corresponding Fokker-Planck equation is

∂

∂t
p(x, t|x0, t0) =

σ2

2

∂2

∂x2
p(x, t|x0, t0)−

∂

∂x
[(µ− γx)p(x, t|x0, t0)] (1.128)

and with the initial condition limt→t0 p(x, t|x0, t0) = δ(x − x0) and the natural BC gives the
solution

p(x, t|x0, t0) =

[

π
σ2

γ

(

1− e−2γt
)

]−1/2

exp

[

− [x− µ/γ + (µ/γ − x0)e
−γt]

2

σ2

γ (1− e−2γt)

]

(1.129)

In other words p(x, t|x0, t0) ∈ N (E(X), V ar(X)) with

E(X(t)|X(0) = x0) =
µ

γ
−
(

µ

γ
− x0

)

e−γt (1.130)

and

V ar(X) =
σ2

2γ

(

1− e−2γt
)

. (1.131)

Moreover

E {X(t)X(τ)} =
µ2

γ2
+

µ

γ

(

x0 −
µ

γ

)

(

e−γt + e−γτ
)

+

[

(

x0 −
µ

γ

)2

− σ2

2γ

]

e−γ(t+τ) +
σ2

2γ
e−γ|t−τ | (1.132)

One can immediatly see that the O-U process admits a steady state (γt >> 1) solution.
In order to solve the problem for the first passage time of the O-U process we consider the

Laplace transform of the pdf pT (∂Ω, t|x0)

p̂T (∂Ω, s|x0) =

∫

R+

pT (∂Ω, t|x0)e
−stdt. (1.133)
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We have seen previously that p̂T (∂Ω, s|x0) satisfies eq. (1.49) where in this case

L̂†
FP (x) = D(1)(x)

∂

∂x
+D(2)(x)

∂2

∂x2
= (−µ+ γx0)

d

dx0
+

σ2

2

d2

dx2
0

. (1.134)

Hence the equation to be solved in the Laplace space is

σ2

2

d2

dx2
0

p̂T (∂Ω, s|x0) + (−µ+ γx0)
d

dx0
p̂T (∂Ω, s|x0)− sp̂T (∂Ω, s|x0) = 0. (1.135)

The BC conditions to be imposed on this equation depend on the first passage time problem
considered: If for example ∂Ω = [r, ξR] with r reflecting and ξR absorbing the corresponding BC
are

lim
x0→ξR

p̂T ([r, ξR], s|x0) = 1, lim
x0→r

p̂T ([r, ξR], s|x0) = 0. (1.136)

If, on the other hand, two absorbing BC are considered (i.e. ∂Ω = [ξL, ξR]) the BC become

lim
x0→ξR

p̂T ([r, ξR], s|x0) = 1, lim
x0→ξL

p̂T ([r, ξR], s|x0) = 1. (1.137)

To solve the above equation we first consider the following change of variables

y0 = x0 − µ/γ (1.138)

This gives
σ2

2

d2

dy20
p̂T (∂Ω, s|y0) + γy0

d

dy0
p̂T (∂Ω, s|y0)− sp̂T (∂Ω, s|y0) = 0. (1.139)

Clearly limx0→a is replaced by limy0→a−µ/γ . Following a typical procedure used to solve the
parabolic cylinder equation we perform the change of variable

y0 = −
(

σ2w0/γ
)1/2

(1.140)

that inserting in (1.139) gives

w0
d2

dw2
0

p̂T (∂Ω, s|w0) + (1/2− w0)
d

dw0
p̂T (∂Ω, s|w0)−

s

γ
p̂T (∂Ω, s|w0) = 0. (1.141)

If we perform a further set of transformation

p̂T (∂Ω, s|w0) = ew0/2û(∂Ω, s|w0) (1.142)

w0 = z20/2, (1.143)

we finally get
d2

dz20
û(∂Ω, s|z0) +

(

−s/γ + 1/2− z20/4
)

û(∂Ω, s|z0) = 0. (1.144)

This last equation is the so called Weber equation and its general solution is a linear combi-
nation of the two independent soution D−s/γ(z0) and D−s/γ(−z0) where Dη(x) is the Parabolic

Cylinder Function (or Weber function) (see Appendix) Hence

û(∂Ω; s|z0) = AD−s/γ(z0) +BD−s/γ(−z0). (1.145)

In order to get the coefficients A and B we should look at the BC considered.

Case I ∂Ω = [r, ξ].
In this case we should impose the BC

lim
z0→zξ

û([r, ξ]; s|z0)ez
2
0/4 = 1,

lim
z0→zr

û([r, ξ]; s|z0)ez
2
0/4 = 0. (1.146)
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This gives

AD−s/γ(zξ) +BD−s/γ(−zξ) = e−z2
ξ/4

AD−s/γ(zr) +BD−s/γ(−zr) = 0. (1.147)

Solving with respect to A and B we have:

A = e−z2
ξ/4

D(−zr)

D(zξ)D(−zr)−D(zr)D(−zξ)

B = −e−z2
ξ/4

D(zr)

D(zξ)D(−zr)−D(zr)D(−zξ)
(1.148)

where we have omitted the subscripts −s/γ for simplicity. By plugging back in the solution
for û(∂Ω; s|z0) we should get

û(∂Ω; s|z0) = e−z2
ξ/4

[

D(z0)D(−zr)−D(zr)D(−z0)

D(zξ)D(−zr)−D(zr)D(−zξ)

]

. (1.149)

The expression above is quite complicated but in the limit zr → −∞ it can be simplified a
lot. Indeed it is known that the asymptotic expansion of the Weber functions are

D−s/γ(x) = e−x2/4x−s/γ

[

1 +O
1

x2

]

D−s/γ(−x) =

√
2π

Γ(s/γ)
e−x2/4xs/γ+1

[

1 +O
1

x2

]

(1.150)

Hence
D−s/γ(x)

D−s/γ(−x)
= x

(

1 +O
1

x2

)

. (1.151)

Suppose we consider the case r → −∞ and take b = −zr. From the expression of A and B
we finally get

A = e−z2
ξ/4

1

D(zξ)− D(zr)
D(−zr)

D(−zξ)
→ e−z2

ξ/4
1

D(zξ)

B = e−z2
ξ/4

1

D(zξ)
D(−zr)
D(zr)

−D(−zξ)
→ 0 (1.152)

The solution for ∂Ω = [−∞, ξ] is then

û(∂Ω; s|z0) = e−z2
ξ/4

D(−z0)

D(−zξ)
. (1.153)

and since p̂T (∂Ω; s|z0) = ez
2
0/2û(∂Ω; s|z0) we have

p̂T (∂Ω; s|z0) = exp

(

z20 − z2ξ
4

)

D(−z0)

D(−zξ)
. (1.154)

Note that in the case we consider ∂Ω = [ξ,+∞] (i.e. xz0 > zξ), the solution would be

p̂T (∂Ω; s|z0) = exp

(

z20 − z2ξ
4

)

D(z0)

D(zξ)
. (1.155)
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Going backwards in the sequence of transformations i.e.

z = −21/2
yγ1/2

σ
= − (2γ)1/2

σ
(x0 − µ/γ) (1.156)

we finally get

p̂T (∂Ω; s|x0) = exp
[ γ

2σ2

(

(x0 − µ/γ)2 − (ξ − µ/γ)2
)

] D−s/γ

[

(

2γ
σ2

)1/2
(x0 − µ/γ)

]

D−s/γ

[

(

2γ
σ2

)1/2
(ξ − µ/γ)

] (1.157)

Case II ∂Ω = [ξL, ξR] In this case we should impose the BC

lim
z0→zξL

û([ξL, ξR]; s|z0)ez
2
0/4 = 1,

lim
z0→zξR

û([ξL, ξR]; s|z0)ez
2
0/4 = 1. (1.158)

This gives

AD−s/γ(zξL) +BD−s/γ(−zξL) = e−z2
ξL

/4

AD−s/γ(zξR) +BD−s/γ(−zξR) = e−z2
ξR

/4. (1.159)

and by solving with respect to A and B gives

A = −D(−zL)e
−z2

R/4 −D(−zR)e
−z2

L/4

D(zL)D(−zR)−D(zR)D(−zL)

B =
D(zL)e

−z2
R/4 −D(zR)e

−z2
L/4

D(zL)D(−zR)−D(zR)D(−zL)

By plugging back these expressions in the solution for û(∂Ω; s|z0) we obtain

û([ξL, ξR]; s|z0) =

[(

D(zL)e
−z2

R/4 −D(zR)e
−z2

L/4
)

D(−z0)−
(

D(−zL)e
−z2

R/4 −D(−zR)e
−z2

L/4
)

D(z0)
]

D(zL)D(−zR)−D(zR)D(−zL)
(1.160)

Note that in the more symmetric situation ∂Ω = [−ξ, ξ] by changing zR = zξ, zL = −zξ in
the above equation and symplifying we get

û([−zξ, zξ]; s|z0) = e−z2
ξ/4

D(−z0) +D(z0)

D(−zξ) +D(zξ)
(1.161)

Note. We could have reached the same results by referring to equation (1.62) where u(z)
replaced by D(z).

Going backwards along the sequence of tranformations we obtain

p̂([−ξ, ξ]; s|x0) = e[
γ

2σ2 ((x0−µ/γ)2−(ξ−µ/γ)2)]
D−s/γ

[

(

2γ
σ2

)1/2
(x0 − µ/γ)

]

+D−s/γ

[

(

2γ
σ2

)1/2
(µ/γ − x0)

]

D−s/γ

[

(

2γ
σ2

)1/2
(ξ − µ/γ)

]

+D−s/γ

[

(

2γ
σ2

)1/2
(µ/γ − ξ)

] .

(1.162)
The above solution seems very difficult to be inverted. To simplify the situation let us
suppose µ = 0 and x0 = 0. Then

p̂([−ξ, ξ]; s|0) = D−s/γ(0) +D−s/γ [0]

D−s/γ

[

(

2γ
σ2

)1/2
ξ
]

+D−s/γ

[

−
(

2γ
σ2

)1/2
ξ
] . (1.163)
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If we call aξ =
(

2γ
σ2

)1/2
ξ we have to calculate the inverse transform of the function

p̂([−ξ, ξ]; s|0) = 2D−s/γ(0)

D−s/γ(aξ) +D−s/γ(−aξ)
. (1.164)
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Exercises

1. Consider the d = 1 stochastic process X(t) that evolves within the domain [a, b] according to
the Langevin equation

∆x(t) = F (x) + ∆W (1.165)

where

F (x) = −
(

dU(x)

dx

)

(1.166)

is a force due to the potential U(x) and the corresponding FP equation is

∂

∂t
p(x, t|x0, t0) = −

(

∂

∂x
(F (x)p(x, t|x0, t0))

)

+
D

2

(

∂2

∂x2
p(x, t|x0, t0)

)

(1.167)

where D is the 1d diffusion coefficient. Compute the mean first passage time of the process
by using the adjoint operator and solve the equation

L̂dagger
F P (x0)T

(1)(x0) = −1 (1.168)

for the three cases

• a reflecting and b absorbing

• a absorbing and b reflecting

• a and b both absorbing

As an application consider the cases in which U = −x and U = − 1
2x

2

2. Find the mean of the minimum first passage time for a system of N random walks all starting
at x0 and living in the region x ∈ [0, L].

Solution. From the definition of the first passage time, the minimum first passage time is
the time when the first among the N walkers reaches the boundaries i.e.

τmin = min{T (1), · · · , T (N)} (1.169)

where T (i) is the first passage time of the i-esim walker. τmin is clearly related to the
probability SN (t|x0) that N walkers, all starting at x0 survive at time t. If the N walkers
are independent this probability is simply given by the product of the individual survival
probabilities S(t|x0) previously computed, i.e.

SN (t|x0) = S(t|x0)
N . (1.170)

Therefore, the PDF of the minimum first passage time is

fN (t|x0) = − d

dt
S(t|x0)

N = Nf(t|x0)S(t|x0)
N−1 (1.171)

The mean of the minimum first passage time is then

〈τ(x0)〉 =
∫ ∞

0

tfN (t|x0)dt = N

∫ ∞

0

f(t|x0)S(t|x0)
N−1dt (1.172)



Chapter 2

First passage problems in d > 1

Let us consider now the first passage problem for stochastic processes defined on R
d. In this case we

suppose that the stochastic process is defined on a region Ω ⊂ R
d with boundary ∂Ω. The boundary

can be sufficiently complex and in general can be the union of different subsets ∂Ω =
⋃

Γi. To

fix the idea consider a stochastic process ~X(t) defined on a subregion of R3 delimitated by two
spherical surfaces Γext and Γin. In this case ∂Ω = Γext

⋃

Γin with Γext

⋂

Γin = ∅. The definitions
are similar to the ones presented for the d = 1 case the only difference being in the determination
of the BC.

Definition. The first passage time of a stochastic process ~X(t) defined on a domain Ω of boundary

∂Ω and whose starting point is ~X(0) = ~x0 is the time at which the stochastic variable ~X(t) first
leaves a specific domain Ω through its boundary ∂Ω.

Following the d = 1 we can consider some particular boundaries ∂Ω and define T (∂Ω, ~x0)
accordingly.

• Suppose ∂Ω = Γext

⋃

Γin where Γext is a reflecting boundary (that can go also to infinity). If
one is interested in looking at the stochastic process reaching for the first time the boundary
Γin, the first passage time can be defined as

T (Γin, ~x0) = sup
{

t ≥ 0| ~X(τ) ∈ Ω/Γin

}

(2.1)

or
T (Γin, ~x0) = inf

{

t ≥ 0| ~X(t) ∈ Γin

}

(2.2)

• Another case is when both boundaries are absorbing. In analogy with the second case
described in the previous chapter we then define

T (Γin,Γext, ~x0) = sup
{

t ≥ 0| ~X(τ) ∈ Int(Ω)
}

(2.3)

or
T (Γin,Γext, ~x0) = inf

{

t ≥ 0| ~X(t) ∈ Γin or ~X(t) ∈ Γext

}

(2.4)

The definition of the probability distribution for T (∂Ω, ~x0) is similar to the one defined for
d = 1.

Probabiity distribution of T (∂Ω, ~x0)

The probability distribution of the random variable T (∂Ω, ~x0) is defined as

T (∂Ω, t|~x0) = P

{

T (∂Ω, ~x0) < t| ~X(0) = ~x0

}

(2.5)
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and its PDF

pT (∂Ω, t|~x0)dt = P

{

t ≥ T (∂Ω, ~x0) ≥ t+ dt| ~X(0) = ~x0

}

≡ dT (∂Ω, t|x0) (2.6)

Note. The density distribution pT (∂Ω, t|~x0) is known, in diffusion controlled reaction problems,
as the reaction rate of the process.

Survival probability

As in d = 1 the survival probability of ~X(t) started at ~x0 and with boundary ∂Ω is given by

S(∂Ω, t|x0) ≡ 1− T (∂Ω, t|x0) = P

{

T (∂Ω, ~x0) > t| ~X(0) = ~x0

}

(2.7)

Clearly
pT (∂Ω, t|~x0)dt = d (1− S(∂Ω, t|~x0))−−dS(∂Ω, t|~x0) (2.8)

Hence

pT (∂Ω, t|~x0)dt = − ∂

∂t
S(∂Ω, t|x0)dt. (2.9)

Moments of the distribution T (∂Ω, t|x0)

The first moment or mean first passage time (MFPT) is here defined as

E {T (∂Ω, ~x0)} ≡ T (1)(∂Ω, ~x0) =

∫ ∞

0

tpT (∂Ω, t|~x0)dt = −
∫ ∞

0

t
∂

∂t
S(∂Ω, t|~x0)dt. (2.10)

Similarly,

E {T (∂Ω, ~x0)
m} ≡ T (m)(∂Ω, ~x0) =

∫ ∞

0

tmpT (∂Ω, t|~x0)dt = −
∫ ∞

0

tm
∂

∂t
S(∂Ω, t|~x0)dt. (2.11)

If we integrate the last equation by parts we get

T (m)(∂Ω, ~x0) = tmS(∂Ω, t|~x0) |∞0 +

∫ ∞

0

tm−1S(∂Ω, t|~x0)dt. (2.12)

Since S(∂Ω, 0|~x0) = 1 forall ~x0 ∈ Int(Ω), limt→0 t
mS(∂Ω, t|~x0) = 0. As in the d = 1 case one has

to be careful about the value at the other extreme. Clearly S(∂Ω, 0|~x0) → 0 as t → ∞ but, in order
to have a well defined moment of order m we have to ask that, for fixed m, S(∂Ω, t|~x0) ∼ 1/tm+ǫ

as t → ∞. In this case limt→∞ tmS(∂Ω, t|~x0) = 0 and

T (m)(∂Ω, ~x0) = m

∫ ∞

0

tm−1S(∂Ω, t|~x0)dt. (2.13)

In particular, for the MFPT we have

T (1)(∂Ω, ~x0) =

∫ ∞

0

S(∂Ω, t|~x0)dt. (2.14)

As for the d = 1 case we limit ourselves to Markov, continuous Gaussian processes where the
conditional probabiity density p(~x, t|~x0, 0) satisfies the Fokker-Planck equation

∂

∂t
p(~x, t|~x0, 0) = L̂FP (~x, t)p(~x, t|~x0, 0) (2.15)

or in its continuity form
∂

∂t
p(~x, t|~x0, 0) +∇ ·~j(~x, t|~x0, 0) = 0. (2.16)
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Sometimes it is useful to express T (1)(∂Ω, ~x0) in terms of the current density. This is easily
done by integrating both terms of the continuity equation on Ω:

∂

∂t
S(t, |~x0) = −

∫

Ω

∇ ·~j(~x, t|~x0, 0)d~x =

∫

∂Ω

~j(~x, t|~x0, t0) · n̂dS. (2.17)

This gives

T (1)(∂Ω, ~x0) = −
∫ ∞

0

t
∂

∂t
S(∂Ω, t|~x0)dt =

∫ ∞

0

t

[
∫

∂Ω

~j(~x, t|~x0, t0) · n̂dS
]

dt (2.18)

2.0.1 PDE for the evolution of S(∂Ω, t|~x0)

The procedure to find the evolution equation for S(∂Ω, t|~x0) in d > 1 is a simple generalization of
the one presented above for the d = 1 case. Let us here describe it in more detail for the following
d dimensional Fokker Planck operator:

L̂FP (~x) = ∇ ·D(~x)∇+ β∇ ·D(~x)(∇U(~x) (2.19)

where U(~x) is a generic potential. The first step consists in computing the adjoint operator of
L̂FP (~x). We do it here explicitely. For some test function u(~x) and v(~x) we have
∫

Ω

v(~x)L̂FP (~x)u(~x) =

∫

Ω

v(~x) [∇ ·D(~x)∇]u(~x)d~x+ β

∫

Ω

v(~x) [∇ ·D(~x)(∇U)]u(~x)d~x

=

∫

Ω

∇ · [v(~x)D(~x)∇u(~x)] d~x−
∫

Ω

∇ · v(~x) [D(~x)∇u(~x)] d~x

+ β

∫

Ω

∇ · [v(~x)D(~x)(∇U)u(~x)] d~x− β

∫

Ω

∇ · v(~x) [D(~x)(∇U)u(~x)] d~x

=

∫

Ω

∇ · [v(~x)D(~x)∇u(~x)] d~x−
∫

Ω

∇ · [D(~x)∇ · v(~x)u(~x)] d~x

+

∫

Ω

∇ · [D(~x)∇v(~x)]u(~x)d~x+ β

∫

Ω

∇ · [v(~x)D(~x)(∇U)u(~x)] d~x

− β

∫

Ω

[D(~x)(∇U)]∇ · v(~x)u(~x)d~x (2.20)

Since this is true for any test function one can formally write

vL̂FPu− uL̂†v = ∇ · P [u, v], (2.21)

where
L̂†(~x) = ∇ ·D(~x)∇− βD(~x)(∇U) · ∇ (2.22)

and the bilinear form
P [u, v] = vD∇u− uD∇v + βD(∇U)uv. (2.23)

For a given Fokker-Planck operator, the formal solution of the FP equation is given by

p(~x, t|~x0, t0) =

∫

Ω

δ(~x− ~x′)etL̂FP (~x′)δ(~x′ − ~x0)d~x
′ (2.24)

Since P [δ(~x− ~x′), δ(~x′ − ~x0)] for ~x and ~x0 inside the region Ω vanishes on ∂Ω one can rewrite the
solution 2.24 as

p(~x, t|~x0, t0) =

∫

Ω

δ(~x′ − ~x0)e
tL̂†

FP
(~x′)δ(~x− ~x′)d~x′. (2.25)

Differentiating the last equation with respect to t yields the backward Fokker-Planck equation 1

∂tp(~x, t|~x0, t0) = L̂†(~x0)p(~x, t|~x0, t0). (2.26)

1The Backward Fokker-Planck equation can be also obtained directly starting from the Chapmann-Kolmogorov

equation. See Chapter on Fokker-Planck TODO
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Equation (2.26) has to be complemented by BC which garantee P [u, v] to vanish on ∂Ω. This
requires eq. (2.23) to vanish on ∂Ω. If we identify u and v with the solution of Eqs. (2.24) and
(??) respectively one has to require, in the case for example of the absorbing condition on Γin:
p(~x ∈ Γin, t) = 0, u(x ∈ Γin) = 0 and v(~x ∈ Γin) = 0, i.e. (D(~x ∈ Γin) 6= 0),

p(~x, t|~x0, 0) = 0, ~x0 ∈ Γin. (2.27)

In the case of radiation boundary condition (or Robin BC) at Γin

j(~x ∈ Γin, t) = kp(~x ∈ Γin, t), (2.28)

∇u+ β(∇U)u = [k/D(~x ∈ Γin)]u, we have ∇v = [k/D(~x ∈ Γin)]v, i.e, [D(~x ∈ Γin) 6= 0],

∇~x0
p(~x, t|~x0, 0) =

k

D(~x0)
p(~x, t|~x0, 0), ~x0 ∈ Γin. (2.29)

At this point we can derive a PDE for the survival probability S(∂Ω, t, |~x0) by simply integrating
eq. (2.26) over ~x. This gives

∂tS(∂Ω, t|~x0) = L̂†(~x0)S(∂Ω, t|~x0). (2.30)

The boundary conditions (??) and (2.28) become respectively [D(~x ∈ Γin) 6= 0],

S(∂Ω, t|~x0) = 0 ~x0 ∈ Γin, (2.31)

and

∇S(∂Ω, t|~x0) =
k

D(~x0)
S(∂Ω, t|~x0) ~x0 ∈ Γin. (2.32)

2.0.2 ODE for the MFPT

As for the d = 1, to obtain a differential equation for T (1)(∂Ω, ~x0) it is sufficient to integrate eq.
(2.30) over time. Since

∫

R+

(∂/∂t)S(∂Ω, t|~x0) = S(∂Ω,∞|~x0)− S(∂Ω, 0|~x0) = −1, (2.33)

we finally have

L̂†
FP (~x0)T

(1)(~x0) = −1. (2.34)

In general it is not simple to solve analytically either the Fokker-Planck equation in any dimensions
and get p(~x, t|~x0, 0) or solve the PDE (2.30) for S(∂Ω, 0|~x0) or even the ODE (2.34) for the MFPT.
In some particular cases, however, it is possible to reach some level of knowledge from analytical
computation. Below we present some of these cases that mainly relies on symmetric properties of
the problem.

2.0.3 MFPT for symmetric diffusion in d dimensions

In this case the stochastic process ~X(t) is a simple free diffusion. Let us see how the MFPT can
be computed by following the 3 different routes mentioned in the previous chapter.

MFPT from route [i]

In this full approach we start from the solution of p(r, t|r0, t) found for spherical symmetric free
diffusion where the boundary at a = Rin is absorbing. Recalling Eq. (??) and putting a = Rin

we have

p(r, t|r0, t0) =
1

4πrr0

1
√

4πD(t− t0)

(

exp

[

− (r − r0)
2

4D(t− t0)

]

− exp

[

− (r + r0 − 2Rin)
2

4D(t− t0)

])

. (2.35)
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We recall (see beginning of the chapter) that in general, given p(~r, t|~r0, t0) the reaction rate can
be obtained as

w(t|~r0, t0) = − d

dt
S(t|~r0) = −∂t

∫

Ω

∇ ·~j(~r, t|~r0, t0)d~r =

∫

∂Ω

~j · n̂dS (2.36)

In our case ∂Ω = Γ1 and being the problem spherical symmetric, we have

w(t|r0, t0) = 4πR2
inD∂rp(r, t|r0, t0) |r=Rin

(2.37)

where the factor 4πR2
in takes the surface area of the spherical boundary into account. By inserting

(2.35) into (2.37) one gets

w(t|r0, t0) =
Rin

r0

1
√

4πD(t− t0)

r0 −Rin

t− t0
exp

[

− (r0 −Rin)
2

4D(t− t0)

]

. (2.38)

From the reaction rate w(t|r0, t0) one can evaluate the fraction of particles which react at the
boundary r = Rin according to

Nreact(t|r0, t0) =
∫ t

t0

w(t′|r0, t0)dt′. (2.39)

MFPT from route [ii]

In this approach the idea is to solve the Backward equation for the survival probability, i.e.

∂

∂t
S(t|~r0) = L̂†(~r0)S(t|~r0) (2.40)

where, we recall here,

L̂†(~r0) = ~∇ ·D(~r)~∇− βD(~r)
(

~∇U
)

· ~∇ (2.41)

and the Robin BC

∇S(t|~r0) =
k

D(~r0)
S(t|~r0) r0 ∈ Γ1. (2.42)

If we assume a perfect spherical symmetry for D(~r) and U(~r), the backward FP equation simplifies
(in d dimensions) to

∂

∂t
S(t|r0) =

∂

∂r0
D(r0)

∂

∂r0
S(t|r0) +D(r0)

[

d− 1

r0
− β

dU

dr0

]

∂

∂r0
S(t|r0). (2.43)

The radiative BC in Γ1 simplifies to:

∂

∂r0
S(t|r0)

∣

∣

∣

∣

r0=Rin

=
k

D(Rin)
S(t|Rin). (2.44)

The outer boundary condition can be taken to be

lim
r0→∞

S(t|r0) = 1 (2.45)

or reflecting , if Γ2 is bounded,
∂

∂r0
S(t|r0)

∣

∣

∣

∣

r0=Rext

= 0. (2.46)

Clearly, the initial condition is

S(0|r0) = 1, (2.47)
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since at t = 0 the particle has not reached any boundary yet. In order to simplify the above
problem let us consider a constant diffusion equation: D(r0) = D. A possible way to get S(t|r0)
is to compute first the Laplace transform

S̃(s|r0) =
∫

R+

e−stS(t|r0) (2.48)

and then perform (whenever is possible) the inverse trasform to get back S(t|r0). The equation
for S̃(s|r0) becomes

D

[

d2

dr20
S̃(s|r0) +

(

d− 1

r0
− β

dU

dr0

) ]

= sS̃(s|r0)− S(t = 0|r0) (2.49)

TODO
It is interesting to note that the survival probabilities calculated using different reactive bound-

ary conditions are related,as they are solution of the same partial differential equation. Indeed it
easy to show (Exercise) that

sS̃rad(s|r0) = 1− 1− sS̃abs(s|r0)
1 +DRd−1

in (s/k)(∂S̃abs(s|r0)/∂r0)r=Rin

(2.50)

MFPT from route [iii]

Eq. (??) can be solved analytically not only for few problems in d = 1 but also for any d where
the boundary conditions, the potential, and the diffusion coefficient in an orthogonal curvilinear
coordinate system depend solely on a single coordinate. In particular, for d dimensions employing
spherical coordinates and exployting spherical symmetry we have

r1−d
0

d

dr0

[

rd−1
0 D(r0)

d

dr0
T (1)(r0)

]

−D(r0)β
dU

dr0

d

dr0
T (1)(r0) = −1. (2.51)

Suppose that Γin and Γext are spherical surfaces respectively of radius Rin and Rext with Rin <
Rext. In this case absorbing boundary conditions correspond to

T (1)(r0 = Rin) = T (1)(r0 = Rext) = 0 (2.52)

reflecting BC to
[

d

dr0
T (1)(r0)

]

r0=Rin

=

[

d

dr0
T (1)(r0)

]

r0=Rext

= 0 (2.53)

and radiation BC, say at r0 = Rin to

[

d

dr0
T (1)(r0)

]

r0=Rin

=
k

D(Rin)
T (1)(Rin). (2.54)

A classical problem correspond to the case in which the bigger surface is the container (cell) whereas
the inner sphere describes a target. In this respect the correct BC to impose are reflecting on Γext

and radiating on Γin:

[

d

dr0
T (1)(r0)

]

r0=Rext

= 0 (2.55)

[

d

dr0
T (1)(r0)

]

r0=Rin

=
k

D(Rin)
T (1)(Rin). (2.56)

Since Eq. (2.51) corresponds to a first-order inhomogeneous ODE it can be easily solved
subject to the above BC. This gives
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T (1)(r0) =

∫ r0

Rin

ρ1−d
1

D(ρ1)
eβU(ρ1)dρ1

∫ Rext

ρ1

ρd−1
2 e−βU(ρ2)dρ2

+
1

k
R1−d

in eβU(Rin)

∫ Rext

Rin

ρd−1
2 e−βU(ρ2)dρ2. (2.57)

Note that in the k → ∞ limit corresponding to pure absorbing BC at r0 = Rin the second
term of eq. (2.57) vanishes. In the opposite limit k → 0 (almost reflecting BC), is the second term
that dominates the statistics and T (1)(r0) is essentially independent on r0:

T (1) ∼ 1

k
R1−d

in eβU(Rin)

∫ Rext

Rin

ρd−1
2 e−βU(ρ2)dρ2. (2.58)

So far we have considered the general case in which a potential U(r) is present. Now we simplify
the problem by looking at free diffusion U(r) = 0. In this case Eq. (2.57) simplifies to

T (1)(r0) =

∫ r0

Rin

ρ1−d
1

D(ρ1)
dρ1

∫ Rext

ρ1

ρd−1
2 dρ2 +

1

k
R1−d

in

∫ Rext

Rin

ρd−1
2 dρ2 (2.59)

In the simpler case of D(r0) = D we have:

T (1)(r0) =
1

D
Rext(r0 −Rin)−

1

2D
(r20 −R2

in) +
Rext −Rin

k
d = 1; (2.60)

T (1)(r0) =
R2

ext

2D
ln(r0/Rin)−

R2
in

4D

(

(

r0
Rin

)2

− 1

)

+
Rext

2k

(

Rext

Rin
− Rin

Rext

)

d = 2 (2.61)

and

T (1)(r0) =
R3

ext

3D

(

R−1
in − r−1

0

)

− 1

6D

(

r20 −R2
in

)

+
1

3kR2
in

(

R3
ext −R3

in

)

d = 3. (2.62)

To obtain the MFPT we should average over the initial position r0. Suppose for example that
the particles start at the spherical surface Γ2 with r0 = Rext. This means f0(r0) = δ(r0 − Rext).

Hence T (1) =
∫ Rext

Rin
T (1)(r0)δ(r0 −Rext) and in the 3 cases above this gives

T (1)D

R2
ext

=
1

2
(x− 102 +

D

Rextk
(1− x) d = 1; (2.63)

T (1)D

R2
ext

=
1

4
(x2 − 1)− lnx

2
+

1

2kRextx
(1− x2) d = 2; (2.64)

T (1)D

R2
ext

=
1

6
(x2 − 1) +

1

3

(

1− 1

x

)

+
D

3kRextx2
(1− x3) d = 3 (2.65)

where x = Rin/Rext.


