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Brownian motion

0.1 Brownian motion

In 1827, the botanic R. Brown observed with a microscope the never-ending and strongly irregular
motion of the small particles of pool in suspension with water. During the whole 19th century
this behaviour was not understood and at given point even the presence of some ”vital force”
specific of biological objects was considered. This hypothesis was later discarded when the same
phenomenon was observed also for small mineral particles.

The first theoretical explanation of the Brownian motion was given by A. Einstein in 1905
who had the idea to look a the problem from a probabilistic point of view by discarding all
the microscopic details. He interpreted the Brownian motion as coming from the motion of a
mesoscopic particle that continuously experiences collisions with the (much smaller) particles of
the surrounding fluid. Since then the Brownian Motion has become the paradigm of a large class
of stochastic processes and more generally to the statistical mechanics of non-equilibrium.

0.2 The Einstein solution

In the Einstein solution of the Brownian Motion two are the major points to be considered:

1. As the solution considered is very diluted, the motion of the mesoscopic particle is mainly
due to the (very frequent) collisions it experience with the molecules of the surrounding fluid
(ensemble of mesoscopic particles that do not interact with one another).

2. The motion of the molecules is so complicated that their effect on the motion of the meso-
scopic particle cannot be fully described in terms of classical equations of motion but can
be treated only in a probabilistic sense, i.e. by considering the result of several, statistically
independent, collisions.

We will focuss on a one dimensional motion. Following the last consideration one can then intro-
duce a time interval 7 which is small with respect to the observation time scale but sufficiently
large that the motion of the mesoscopic particles between two intervals in 7 can be considered as
independent events (two time scales hypothesis). Let N be the number of mesoscopic particles
suspended in the fluid and suppose we know the z-coordinates of all the meso-particles at times ¢
and t + 7. In a given interval 7 the x-coordinates of the particles will vary of a small quantity A
whose value depends on the particle (i.e. the first meso-particle will experience a shift of Ay, the
second a shift of Ay and so on). Half of these shifts will be in average positive and half negative.
Of course we cannot compute all the shifts particle by particle because of the large number of
solvent molecules colliding to them. We can just follow a probabilistic approach and say that after
the time 7 the number of particles dN who will experience a shift with a span from A to A 4+ dA
will be given by:

dN = NO(A)dA, (1)
where ®(A)dA is the fraction of particles that have experienced a shift with a span between A
and A + dA and

/ B(A)dA = 1. 2)
R
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In this picture the shift A is regarded as a stochastic variable and ®(A) is the associated probability
density. By the plus minus symmetry mentioned before ®(—A) = ®(A).

In order to write an evolution equation let us call f(z,t + 7)dz be the number of particles for
unit volume that are, at time ¢ + 7, within the interval [z, 4+ dz]. This number is obtained by
two terms. The first is related to the number of particles that at time ¢ were within the interval
[+ A, z+dx+ A] multiplied by the fraction of particles ®(—A)dA that have experienced (because
of collisions) a shift of —A with A > 0. The second is determined by the number of particles
that at time ¢ were within the interval [x — A,z + dx — A] multiplied by the fraction of particles
®(A)dA that have experienced a shift of A (A > 0). By integrating over all possible positive
values of A one has:

flz, t+7)dx = dx ( flz 4+ A )P(—A)dA + - flx— AJ)@(A)dA) , (3)

R+

that can be written (remember that ®(—A) = ®(A)) as
f(x,t—l—T)dx:dx/ flx+ A H)P(A)A. (4)
R

Note. We will see later that Eq. (4) is a particular form of the so called Chapman-Kolmogorov
equation for Markov processes. We can indeed rephrase eq. (4) as follow: The probability of a
particle to be in x at time ¢ + 7 is given by the probability of being in x + A at time ¢ times the
probability of experiencing a shift —A when it was in z + A.

Since by hypothesis 7 is much smaller then the observation time scale we can expand f(x,t+7)
for small 7 giving:
of
Jlat+7) = fa 1) + 75 5)
We can also expand f(z + A,t) in terms of A obtaining (see later the Kramers Moyal expansion
for the Chapmann-Kolmogorov equation)

flz+ At :f(m,t>+Aﬁ+A:82f(x,t)

ox 2 02 + O(A3)' (6)

By plugging together the two sides we have

af of
fla )+ = f(x,t)/Rtb(A)dA—k%/RAtb(A)dA
2 T 2 3
+ W/RAQMA)CZA—FO(/R A6<I>(A)dA). (7)

As one can see the right hand side of the equation is a sum of terms that contain the moments
of the distribution function ®(A). Since ®(—A) = ®(A) the odd moments are zero and one can
assume that the higher order even moments can be neglected(see later for a rigorous theorem on
that assumption). We then have:

of (z,t)  0*f(x,t)
ot =D Ox? (8)

where

1 [ A?
DE;/R?¢’(A)CZA. ()

Eq. (8) is known as diffusion equation with diffusion coefficient D.

Note. The diffusion coefficient D is related to the second moment of the distribution function
®(A) of the shifts and is inversely proportional to the time interval between sets of collisions.
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Figure 1: Time evolution of the position (distance from the origin) for a 1D Brownian motion.

From the solution of the diffusion equation when then have

1 152
flx,t) = e 1Dt 10
(@t =7 (10)
The number of particles per unit volume (concentration) at time ¢ and within the interval [z, x+dz]
follows a Gaussian distribution with variance o2 which depends on time t as o(t) = 2Dt. Notice
that the average squared distance (z?) is

(z?) = /Rm2f(x,t)dac = 2Dt (11)

giving the scaling law
Vi) = Vi (12)

Einstein adds that for diffusion in three dimension (x2)) = 6Dt and consequently it should be
(x?) = 4Dt in two dimension.

0.3 Kinematic of Brownian motion

Before we start to study how the interactions particle-molecules can generate such an erratic
motion (dynamic of the Brownian motion) we will try to describe the motion itself from a statistical
point of view. For simplicity let us focus on the 1D motion of a single particle. In figure 1) we
show the time evolution of the position of a single Brownian particle in 1D. The position of the
particle is unbounded and as t increases it will go far away from the initial point (origin) In figure
2 we show the square of the position as a function of time. As one can see the function is quite
irregular but has fluctuations that increase as time increases. From classical kinematics, in order
to obtain the distance covered by the particle from the origin we integrate its velocity over time

x(t) = xo +/0 v(s)ds (13)
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Figure 2: Time evolution of the squared of the position for the path presented in figure 1.

The square of the distance is then

22 + 220 /Otv(s)ds + [/Otv(s)ds}

x2 + 2x0(x — 20) + /0 dsyv(s1) /0 dsav(sa). (14)

2 (t)

Hence \ .
(@lt)=a0)* = [ dsi [ dsav(sn)otia). (15)

and, by taking the average one gets

((a(t) ~ 20)*) = /Ot dsy /Ot dsz (v(s1)v(s2)) (16)

In other words the mean squared distance covered by the particle in a time ¢ can be computed
from the autocorrelation function of the velocities

Cy(s1,82) = (v(s1)v(82)). (17)

In stationary states the correlation function depends only on the time difference s; — so and one
can write

<(m(t) _ $0)2> _ /Ot ds /Ot ds2C, (51 — s2). (18)

By putting 7 = s1 — s9 and T = s + s and by integrating over T' one obtains (Exercise)

<(x(t) _ x0)2> —9 /Ot dr(t — 7)Cy (7). (19)
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In order to perform integral (19) a functional form of the correlation function is needed. This will
be obtained later when we will consider the Langevin approach to the Brownian motion. One can
however make the following considerations. In general

Cy(t) et/ (20)
and is natural to consider as the important time scale of the process the correlation time 7,. This

is indeed the time such that for t << 7, C,(¢) is practically constant whereas for t >> 7, C,(t) is
essentially zero.

Definition (Autocorrelation time 7,.). The autocorrelation time 7, is the time such that
Colt) = Cu(0) t<<m
Cp(t) =~ 0 t>> T, (21)

Note. 7, is a rough measure of the width of the correlation function. An estimate of 7, can be
obtained by computing the area below the curve. A very rough estimate of such area consists in
measuring the height of C,(t) i.e. its initial value C,(0), times a rough measure of its width i.e.

/ T Oyt = 70 (0), (22)
0

giving

1 oo
R0 /O Oy (t)dt | (23)

One can then consider the two limits of large and small time scales as follows:

Short time scale limit If ¢ << 7, it is reasonable to substitute C, () with C,(0) in the integral
for <(m(t) - x0)2> obtaining

((@(t) = 20)") = 20,(0) /O (t —7)dr (24)
= 20,(0) [t* —t*/2] = C,(0)¢? (25)
On the other hand C,(0) = (v?) and we get

(@) —20)°) = ()22 (26)

This is similar to free motion and in this regime the Brownian particle is essentially non
interacting with the environment. This regime is known as ballistic regime.

Large time scale limit For ¢ >> 7, C,(¢) =~ 0 and one can extend to oo the upper limit in the
integral expression for (z?) giving:

<(x(t) - x0)2> - 2t/000 Cy(r)dr — 2 /OOO 7C, (7)dr. (27)

The second term does not depend on time and it will be small if compared to the first one
for t big enough. Hence

((@(t) — 20)?) = Zt/ooo Co(r)dr. (28)

Notice that in this regime the mean squared distance is proportional to ¢ (instead then t2).
This regime is known as diffusive regime. Indeed the solution of the 1D diffusion equation
gives

<(x(t) - x0)2> = 2Dt (29)

where D is the diffusion coefficient. This interpretation will allow then to make the following
identification

D= /0  w(O)o(r))dr (30)
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