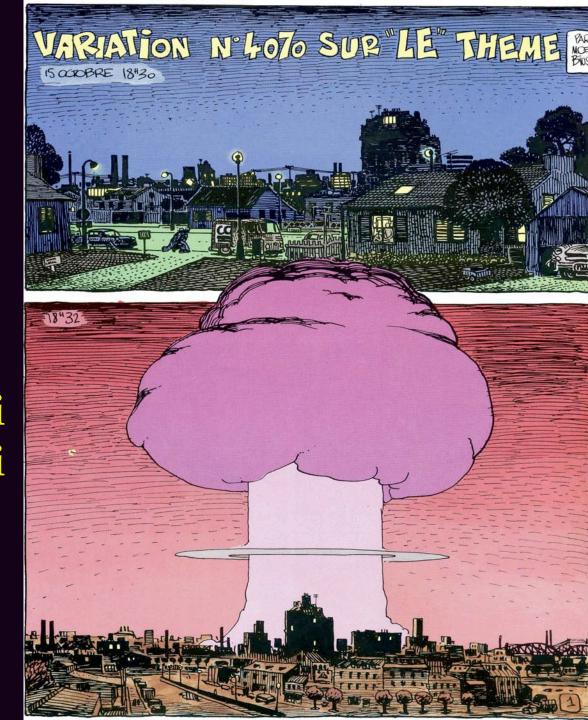


Le armi nucleari oggi Mestre settembre 2015 Alessandro Pascolini

perché preoccuparci oggi delle armi nucleari?

- hanno effetti spaventosi: sono le uniche vere armi di distruzione di massa
- esistono e sono in numero eccessivo
- siamo in una fase di ulteriore sviluppo tecnologico
- sono presenti in aree di crisi
- esistono enormi quantità di materiale fissile
- pericoli di proliferazione
- rischi di terrorismo nucleare
- ostacoli al processo di disarmo e controllo
- scarsa attenzione dell'opinione pubblica

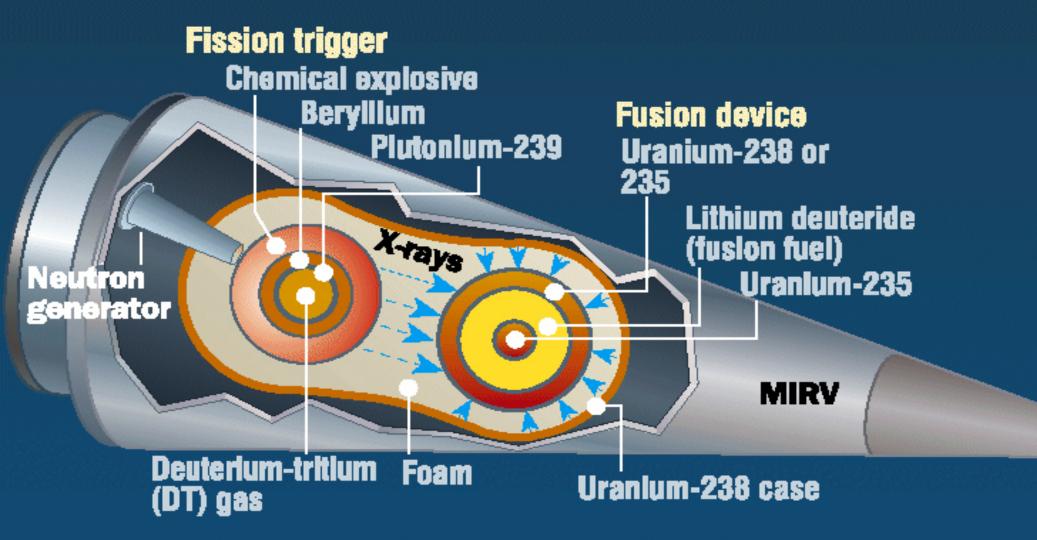
3 minuti a mezzanotte, secondo gli scienziati del Bolletin of Atomic


Scientists

motivi: i cambiamenti climatici non controllati, la modernizzazione globale delle armi nucleari, le dimensioni eccessive degli arsenali delle armi nucleari e il fallimento dei leader mondiali ad agire con la sollecitudine e sulla scala necessarie per proteggere i cittadini dalla potenziale catastrofe.

"L'orologio ora ticchetta a soli tre minuti da mezzanotte perché i leader internazionali vengono meno al loro dovere fondamentale – assicurare e preservare la salvezza e la vitalità della civiltà umana."

Le armi nucleari


- potenza: basata sui fenomeni naturali più energetici: fissione e fusione
- effetti specifici non esistenti per altre armi
- impatto su vasti spazi e tempi lunghi
- impossibilità di difesa, se non la prevenzione

Fissione e fusione nucleari

enorme densità di energia per unità di massa:

- fissione di 1 kg di uranio 235
 - ~ esplosione di 10.000.000 kg di tritolo
- fusione di 1 kg di deuterio-trizio
 - ~ esplosione di 40.000.000 kg di tritolo

MIRV length: 5.7 feet MIRV base diameter: 1.8 feet

Explosive power: 300,000 tons of TNT

Energia di una bomba da 300 kt

```
300 \text{ kt} = 300 \times 4,184 \times 10^{12} \text{ J}
= 300 \times 1,16 \times 10^6 \text{ kWh}
= 300 \times 132,4 \text{ kWanno}
```

potenza massima per un'utenza abitativa 3,3 kW

- = 300 × consumo massimo annuo di 40 case
- = consumo massimo annuo di 12.000 case
- = consumo tipico annuo di 275.000 case

Area di devastazione mortale in km²

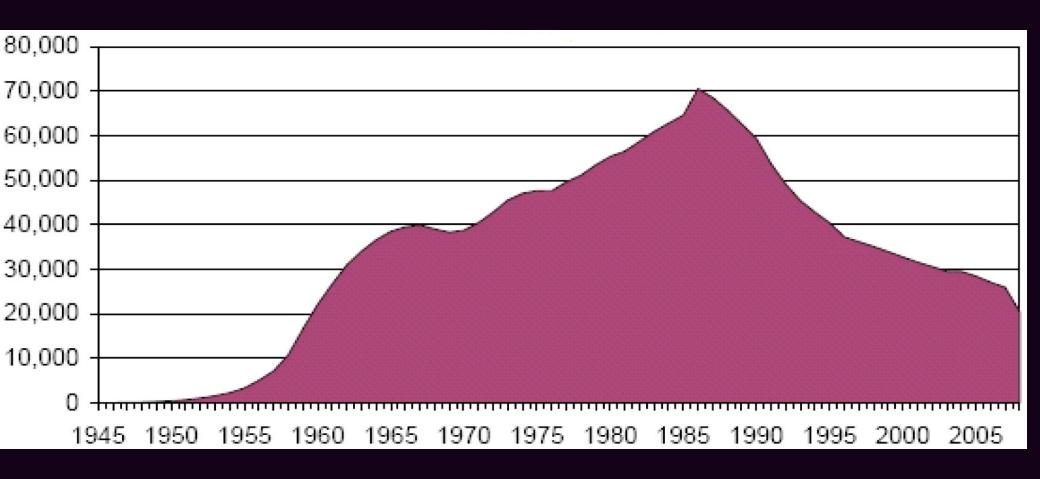
Effetto\ potenza	1 kton	10 kton	100 kton	1 Mton	10 Mton
meccanico	1,5	4,9	17,7	71	313
termico	1,3	11,2	74,2	391	1583
radioattivo	2,9	5,7	11,5	22	54

Numeri enormi (gennaio 2014)

Paesi	Armi operative	Armi altre
USA	2100	5200
Russia	1600	6400
Regno Unito	160	65
Francia	290	10
Cina	250	

Le armi nucleari oltre ai 5 paesi "autorizzati"

paesi quantità test


Israele 80 -> nessuno

India 90 – 110 1974, 1998 [5]

Pakistan 100 – 120 1998 [6]

NordCorea 6 – 8 2006, 2009, 2013

Numero delle armi nucleari esistenti al mondo

Problemi di sicurezza

- i controlli delle armi sono aumentati, ma rimane la possibilità di incidenti nei loro frequenti movimenti e di lanci accidentali o non autorizzati
- molti ordigni risalgono agli anni '80, con i conseguenti problemi di degrado tecnico, ma la loro eliminazione procede in modo estremamente lento
- molti errori, malfunzionamenti e falsi allarmi (Nuclear 'Command and Control': a History of False Alarms and Near Catastrophes di Eric Schlosser)

Un costante grave pericolo

circa 1800 testate sono mantenute in USA e Russia in stato di brevissima allerta, con il rischio che interpretazioni errate o falsi allarmi in situazioni di crisi acute portino a decisioni irreparabili.

Per un falso allarme del gennaio 1995 ufficiali russi hanno confuso un razzo meteorologico norvegese per un missile lanciato da un sommergibile americano: la minaccia di un attacco nucleare percorse le gerarchie militari fino a Boris Yeltsin che giunse ad aprire la sua "valigia nucleare"

programmi di modernizzazione

i paesi nucleari (Russia e USA in testa) stanno sviluppando nuovi ambiziosi progetti

attualmente ci sono in cantiere 27 categorie di nuovi missili balistici, 9 missili cruise, 8 vascelli navali, 5 diversi bombardieri, 8 tipi di testate e 8 fabbriche di armi nucleari.

Questi programmi minacciano di prolungare indefinitamente nel tempo l'era delle armi nucleari.

RUSSIA Strategic Land Sarmat ICBM (silo) SS-27 Mod 2 (RS-24) ICBM (silo) SS-27 Mod 2 (RS-24) ICBM (mobile) New ICBM (RS-26) (mobile) Probably new (including maneuverable) warhead Strategic Sea Borei SSBN SS-N-32 (Bulava) SLBM Probably new warhead PAK-DA bomber Strategic Air Kh-102 ALCM Tactical Su-34 fighter-bomber Severodvinsk (Yasen) SSN SS-N-30 (Kalibr) SLCM SS-26 Iskander-M SRBM S-400/SA-21 SAM (?)

Interceptor for A-135 ABM system

UNITED STATES

Strategic Land	ICBM			
	IW-1 interoperable warhead			
Strategic Sea	SSBNX			
	Trident IID5LE SLBM			
	W76-1/Mk4A warhead			
	W88-1/Mk5A warhead			
Strategic Air	Long-range strike bomber			
	Long-range standoff ALCM			
	B61-12 bomb			
Tactical	F-35A fighter-bomber			
	B61-12 bomb			

PAKISTAN		
	Strategic Land ⁷	Hatf-2 Abdali SRBM
		Hatf-4 Shaheen IA MRBM
		Hatf-6 Shaheen II MRBM
		Hatf-7 Babur GLCM
		Smaller plutonium
		warheads
	Strategic Air	Ra'ad ALCM
	Tactical	Hatf-9 NASR SRBM
		Smaller warhead
INDIA		
	Strategic Land	Agni III IRBM
		Agni IV IRBM
		Agni V IRBM
		(Agni VI ICBM)
		Potentially MIRVed warhead
	Strategic Sea	Arihant SSBN
		K-15 Sagarika SLBM
		K-4 SLBM
		Existing or modified
		warhead
	Strategic Air	(Rafale fighter bomber)

CHINA		
	Strategic Land	DF-31 ICBM
		DF-31A ICBM
		(DF-41 ICBM) ⁴
		Potentially MIRVed warhead
	Strategic Sea	Jin SSBN
		JL-2 SLBM
		New warhead
, ė	Strategic Air	H-6K bomber
		CJ-20 ALCM ⁵
	Tactical	DH-10 GLCM ⁶
UNITED KING	GDOM	
	Strategic Sea	New SSBN
		Trident II D-5LE SLBM
		Modified W76-1/Mk4A
		warhead

NATO		
Belgium	Tactical	(F-35A fighter-bomber) ²
Germany	Tactical	
Italy	Tactical	F-35A fighter-bomber
Netherlands	Tactical	F-35A fighter-bomber
Turkey	Tactical	F-35A fighter-bomber
FRANCE		
	Strategic Sea	M51.2 SLBM
		M51.3 SLBM
		TNO warhead
	Tactical ³	Rafale-3 fighter-bomber

ISRAEL		
	Strategic Land	Jericho III MRBM
	Strategic Air	(F-35A fighter-bomber)
NORTH KOR	EA	
	Strategic Land	Musudan IRBM
		Hwasong-13 (KN-08) ICBM
		Taepo Dong ICBM
		(One or more warheads)8

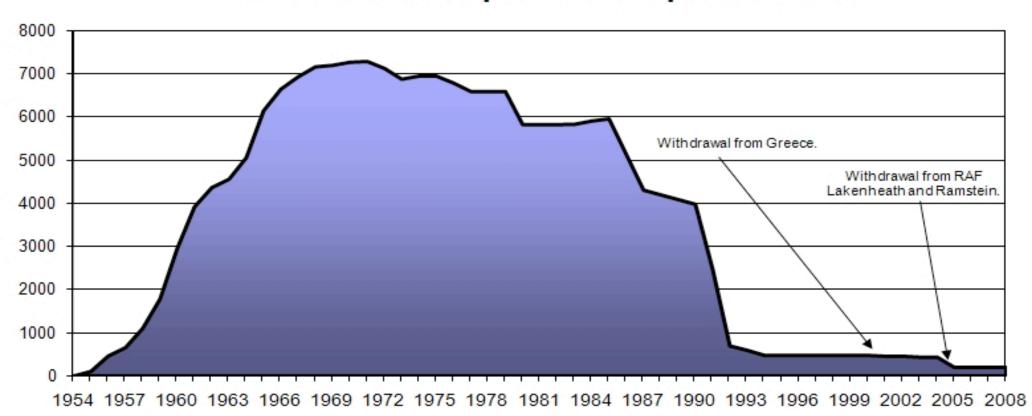
armi nucleari in aree di crisi

- la loro stessa esistenza aggrava i conflitti in atto, suscita diffidenza, incita al riarmo e rende difficili soluzioni pacifiche
- l'asimmetria delle forze può portare le parti che si sentono minacciate a sviluppare proprie armi di distruzione di massa, aggravando ulteriormente i problemi e col pericolo di azioni militari preventive da parte dell'avversario
- rimane il rischio di un loro impiego effettivo in caso di aggravamento dei conflitti ed escalation del confronto militare

Aree di crisi con armi nucleari

- ~ Asia meridionale:
 - conflitto India Pakistan
- ~ Asia nord-orientale:
 - conflitto Nord Corea Sud Corea
 - conflitto Nord Corea Giappone
 - conflitto Cina Giappone
 - conflitto Cina Taiwan
 - mar cinese meridionale Cina USA
- ~ Medio oriente
 - conflitto Israele Iran mondo arabo

Armi nucleari tattiche in Europa


- nuovo interesse russo

- conferma del ruolo nucleare della NATO

- crisi Ucraina

Evoluzione delle armi nucleari americane in Europa

U.S. Nuclear Weapons In Europe 1954-2008

Hans M. Kristensen, Federation of American Scientists, 2008.

Paese	Base	Località	Forze aeree	Controllo testate
Belgio	Kleine Brogel	Limburg	F-16 10° stormo caccia belga	701° squadrone supporto munizioni USA
Germania	Büchel	Rheinland-Pfalz	Tornado PA-200 33° stormo caccia- bombardieri tedeschi	701° squadrone supporto munizioni USA
Italia	Aviano	Friuli	F-16 31° stormo caccia USA	704° squadrone supporto munizioni USA
	Ghedi Torre	Lombardia	Tornado PA-200 6º stormo caccia italiano	704° squadrone supporto munizioni USA
Olanda	Volkel	Noord-Brabant	F-16 1º stormo caccia olandese	703° squadrone supporto munizioni USA
Turchia	Incirlik	Adana	F-16 da altre basi americane	

Ammordenamento delle armi nucleari americane presenti in Europa

Figure 8: Increasing B61 Accuracy

The new B61-12 will be equipped with a guided tail kit to give it greater accuracy than the B61-3 and B61-4 bombs currently deployed in Europe. Each F-35 will be able to carry two B61-12s internally for stealthy delivery.

Armi nucleari "tattiche" russe

Estimated Russian Tactical Nuclear Weapons

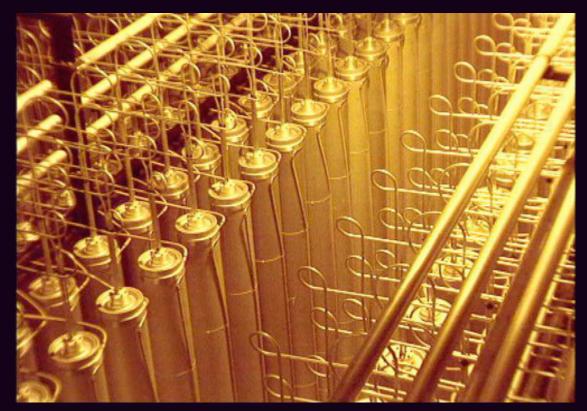
Weapons Category	Reduction Since 1991a	Weapons	Weapons Remaining		
		(total)	(deployed)		
Army	100 percent	0.	0		
Air/missile defence ^c	60 percent ^d	1,120	700		
Air Force	50 percent	2,000	650		
Navy	30 percent	2,270	700		
Total		5,390	2,050		

According to Colonel General Vladimir Verkhovtsev in "Russia determined to keep tactical nuclear arms for potential aggressors," *Pravda*, October 31, 2007.

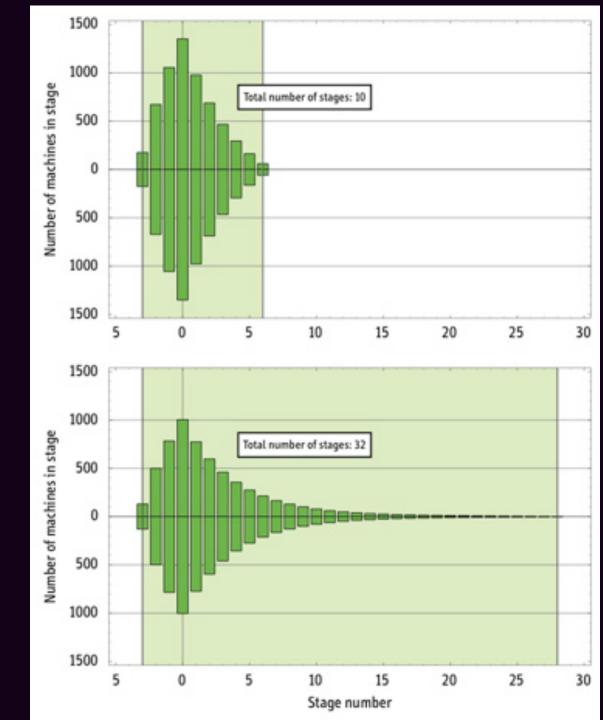
b The Bush administration claimed in 2004 that Russia had not eliminated all.

c Includes surface-to-air missiles and anti-ballistic missiles.

d This reduction is 10 percent greater than President Yeltsin's pledge.


Russian non-strategic nuclear-capable delivery vehicles are based at roughly 80 locations, although warheads assigned to these forces are stored at about 20 central storage sites.

La continua importanza data dalle potenze nucleari ai loro arsenali e alla loro resistenza al disarmo è un potente incentivo alla proliferazione


Ulteriore proliferazione di armi nucleari implica:

- tensioni locali in zone sensibili
- deterioramento dei rapporti internazionali a livello mondiale
- accensione di nuovi conflitti
- vanificazione del regime globale di non proliferazione
- forti contraccolpi allo stesso ordine e istituzioni internazionali

per le armi nucleari serve uranio altamente arricchito o plutonio il pericolo di proliferazione viene dagli impianti di arricchimento dell'uranio (presenti in 12 paesi) e di riprocessamento del combustibile esausto dei reattori (esistenti in 6 paesi)

Lo stesso impianto di arricchimento può produrre combustibile per reattori (basso arricchimento) o materiale per armi (alto arricchimento) riorganizzando gli stadi di operazione

Lavoro necessario per produrre materiale per reattori o per armi

Feed		Product		Separative Work	Time
150,000 kg	U(nat) at 0.71%	20,000 kg LEU at 4% (Tails at 0.20%)		129,800 SWU	1 year
Material and	separative work re	quired to pro	duce enough HEU f	or four bombs p	er year
Feed		Product		Separative Work	Time
150,000 kg	U(nat) at 0.71%	820 kg	HEU at 93% (Tails at 0.20%)	192,300 SWU	
150,000 kg	U(nat) at 0.71%	100 kg	HEU at 93% (Tails at 0.65%)	14,200 SWU	40 days
20,000 kg	LEU at 4%	100 kg	HEU at 93% (Tails at 3.55%)	2,800 SWU	8 days

Stima della quantità di HEU mondiale (in tonnellate) (IPFM 2011).

paese\impiego	armi	navale	usi civili	eccesso	totale	eliminato
Cina	16 ± 4				16 ± 4	
Francia	26 ± 6		6,4		$32,4 \pm 6$	
India	2 ± 0.8				2 ± 0.8	
Israele	0.3 ± 0.06				0.3 ± 0.06	
Pakistan	$2,75 \pm 1$				$2,75 \pm 1$	
Russia	616 ± 120	30	20	71	737 ± 120	446
UK	11,7	8,1	1,4		21,2	
USA	260	230	20	100	610	135
Altri			20		20	
Totale	935 ± 132	268,1	67,8	171	1442 ±132	581

Preoccupante è il crescente interesse per il trattamento del combustibile esausto, sia per ridurre la quantità di scorie altamente radioattive da eliminare, sia per la produzione di nuovo combustibile MOX al plutonio, col risultato della creazione di scorte di plutonio civile superiori a quelle prodotte a scopo militare

Stima della quantità di plutonio separato in tonnellate (IPFM 2011).

paese\tipo	militare	militare in eccesso	stato di produzione	civile nel paese	civile all'estero
			militare		
Cina	1.8 ± 0.6		cessato 1991	13,8	
Nord Corea	0.03 ± 0.02		cessato 2007		
Francia	6 ± 1,0		cessato 1994	56,0	
Germania				2	5,6
Giappone				9,9	35
India	4,72 ± 1,5		attivo	0,24	
Israele	0.82 ± 0.2		attivo		
Pakistan	0.14 ± 0.04		attivo		
Russia	94 ± 25	34	cessato 1997	48,4	
UK	7,6	4,4	cessato 1989	87,7	0,9
USA	38	53,9	cessato 1988		
Altri					10,8
Totale	153 ± 29	92,3		218,04	52,3

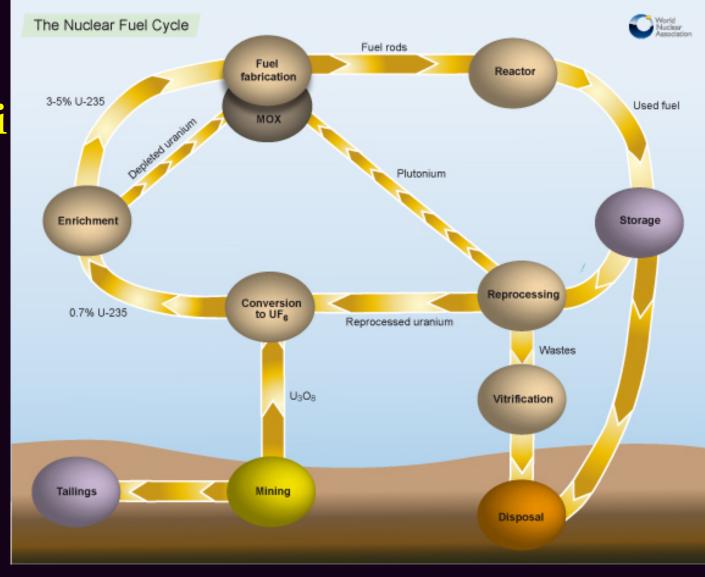

il materiale fissile necessario per una bomba si misura in kilogrammi, mentre le scorte esistenti sono centinaia di tonnellate

Table 2. Approximate fissile material requirements for pure fission nuclear weapons

Yield (kt)	Weapon-grade plutonium (kg) Technical capability level			HEU (kg) Technical capability level		
	1	3	1.5	1	8	4
5	4	2.5	1.5	11	6	3.5
10	5	3	2	13	7	4
20	6	3.5	3	16	9	5

Source: Cochran and Paine (1995: 9).

Necessario un reale controllo internazionale di tutto il ciclo del combustibile nucleare, dalle miniere agli impianti di riprocessamento e ai depositi delle scorie

Pericoli di terrorismo nucleare

- la comparsa di una nuova forma di terrorismo, che mira a infliggere i massimi danni possibili, e non si sente soggetto a inibizioni dovute al timore che attacchi massicci possano creare rigetto e vanificare gli stessi obiettivi politici
- la vasta diffusione di informazioni sulla tecnologia delle armi nucleari, vecchia ormai di oltre mezzo secolo
- la crescente quantità e dispersione di materiali utilizzabili per una bomba
- la globalizzazione, che rende più facile la mobilità di persone, tecnologie e materiali in tutto il mondo

Il rischio maggiore è che un piccolo gruppo di terroristi acquisisca il necessario esplosivo nucleare (un centinaio di kilogrammi di HEU) e possa far detonare un ordigno nucleare rudimentale con la potenza della bomba di Hiroshima.

La messa in sicurezza del materiale nucleare ha quindi la massima priorità, come si è convenuto nel *Nuclear Security Summit* del 2010.

La Russia ha unilateralmente interrotto la collaborazione USA-Russia in questo campo

Stallo nei negoziati per il disarmo nucleare

situazione di crisi del processo negoziale verso il disarmo o per forme di controllo degli armamenti nucleari.

A distanza ormai di 19 anni dalla sua firma, non è ancora entrato in vigore il trattato per il bando totale dei test nucleari (CTBT) per la mancata ratifica da parte di stati cruciali, fra cui gli stessi USA che lo avevano proposto

La Commissione per il disarmo di Ginevra dal 1994 sta discutendo un bando della produzione di materiale fissile esplosivo (FMCT), ma il negoziato è tuttora bloccato dal veto del Pakistan.

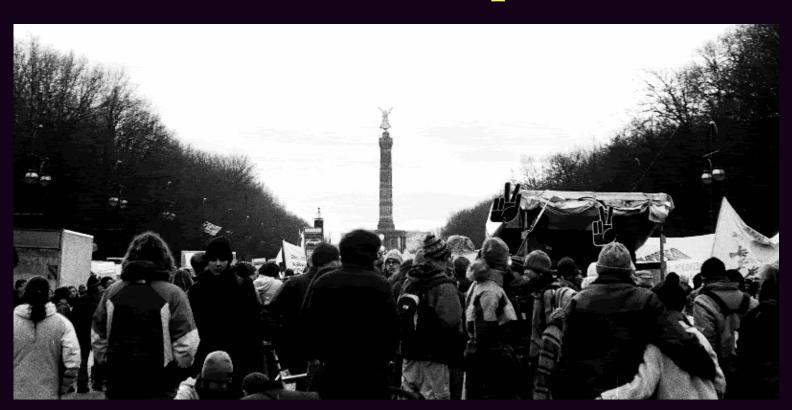
Problemi del trattato di non proliferazione (NPT)

- fallimento della conferenza di revisione del 2015, dopo il successo della conferenza del 2010: insuccesso largamente dovuto all'indisponibilità delle potenze con armi nucleari a impegnarsi sulla via del disarmo, come previsto dall'articolo 6 del trattato. Nel 2010 erano state concordate 22 "azioni" da compiere da parte delle potenze nucleari entro il 2015, ma solo 5 di esse sono state, e solo in parte, realizzate
- resistenze dei paesi non nucleari ad aderire a forme di controllo più incisive sulle loro attività

fallimento del progetto di una zona denuclearizzata in Medio Oriente

non si è riusciti, per l'irrigidimento di Egitto e Israele, a far partire la prevista conferenza preparatoria di una zona priva di armi di distruzione di massa in Medio oriente, una condizione richiesta dai paesi arabi nel 1995 per accettare l'estensione indefinita del trattato NPT e ribadita con determinazione nella conferenza del 2010

Blocco del processo New START


La presente crisi dei rapporti russo-americani sta anche bloccando ogni trattativa per il rafforzamento del trattato New START, come inizialmente previsto dagli accordi fra Dmitry Medvedev e Barak Obama alla firma del trattato l'8

aprile 2010.

Scarsa attenzione dell'opinione pubblica

- essenziale per il raggiungimento di importanti trattati
- concentrata ora su altri tipi di armi

Approccio alternativo al controllo degli armamenti: bando delle armi nucleari per motivi umanitari

l'impiego di tali armi viola i principi fondamentali del diritto umanitario individuati dalla giurisprudenza internazionale nel suo sviluppo dalla metà dell'ottocento: il principio della necessità militare, il principio di distinzione, il principio di proporzionalità e il principio di umanità.

Su questa linea vi sono state delle conferenze internazionali a Oslo (marzo 2013) a Nayarit (Messico, febbrario 2014) e a Vienna (dicembre 2014)

La conferenza di Vienna ha visto la partecipazione di 158 stati, varie organizzazioni internazionali, scienziati e organizzazioni non governative

Venuto a conoscenza del bombardamento atomico di Hiroshima, Albert Einstein disse: "la prima bomba atomica ha distrutto ben più che la città di Hiroshima. Ha fatto esplodere le nostre superate idee politiche, quali le abbiamo ereditate. Come abbiamo cambiato il nostro modo di pensare nel mondo della scienza pura per abbracciare concetti più nuovi ed utili, così dobbiamo cambiare il nostro modo di pensare nel mondo della politica. È troppo

tardi per commettere errori".

Poiché i governanti mondiali non sanno affrontare nel necessario nuovo modo il problema della sicurezza dei popoli e i rapporti internazionali, rinunciando alla pura potenza militare, solo un grande e determinato movimento mondiale di cittadini può oggi essere decisivo per attualizzare finalmente l'obiettivo di "un mondo libero dalle armi nucleari"

