
Theoretical Physics: Group Theory

1 General Definitions

1. Identify the symmetries of an isoscele triangle and of an equilateral triangle.

2. The Dihedral Group Dn, for n ≥ 3 is given by the set of transformations that leave the

n–sided regular polygon invariant. The group is generated by the rotation R of angle

2π/n and the reflection r with respect to the median. Clearly Rn = 1 and r2 = 1.

• Verify that r ·R · r = R−1;

• Show that Dn has 2n elements;

• Verify explicitly the above statements for D4 (Box) and D5 (Pentagon);

3. Prove that the N–roots of 1 form a group, called ZN .

• Verify that ZN has order N.

• Show that Z2 ⊗ Z2 6= Z4 and Z2 ⊗ Z4 6= Z8;

• Verify that Z2 ⊂ Z4 but Z2 * Z5;

• Verify that the set of elements {1, i,−1} is not a group;

4. Let Sn be the group of permutation of N objects and An the group of even permutations:

• Which is the order of Sn and An ?

• Show that for m < n one has that Sm ⊂ Sn;

• Verify that An ⊂ Sn;

• Show that S4 is not simple;

• Show that A4 is an invariant subgroup of S4;

2 Groups Representations

1. Consider the group Z2.



• Write the trivial, the 1-dimensional and the 2-dimensional representations;

• Find explicitly a 2-dimensional representation for Z2;

• Show that the 2-dimensional representation is completely reducible;

2. Consider the group Z3.

• Write the trivial, the 1-dimensional and the 3-dimensional representations;

• Show that the following matrices form a representation of Z3:

D(e) =

1 0 0

0 1 0

0 0 1

 , D(ω) =

0 0 1

1 0 0

0 1 0

 , D(ω2) =

0 1 0

0 0 1

1 0 0


• Show that this representation is completely reducible;

3. Write a generic element of SO(2) in the 2-dimensional representation.

4. Write a generic element of SU(2) in the 2-dimensional representation.

5. Write a generic element of SO(3) in the 3-dimensional representation, and show that

SO(2) ⊂ SO(3).

6. Suppose that D1 and D2 are equivalent, irreducible representations of a finite group G,

such that

D2(g) = SD1(g)S−1 ∀g ∈ G

What you can say about and operator A that satisfies

AD1(g) = D2(g)A ∀g ∈ G ?

3 Lie Groups and Algebra

1. Show that GL(n,R) is a Lie group of dimension n2.

2. Show that SU(n) is a Lie group of dimension n2 − 1.

3. Show that U(n) is not isomorphic to U(1)× SU(n). In particular show that the identity

of U(n) can be obtained in n different ways as product of U(1) and SU(n) elements.

Show instead that the associated Lie Algebras are isomorphic.



4. Show that Sp(2n,R) is a group. In particular show that if M ∈ Sp(2n,R) also M−1 ∈
Sp(2n,R). Moreover show also that also MT ∈ Sp(2n,R).

5. Show that the Poisson bracket of a QM system with n d.o.f are invariant under a sym-

plectic transformation Sp(2n,R).

6. Show that the dimension of Sp(2n,R) is n(2n+ 1).

7. Show that Sp(2) ' SL(2,R). Describe the associated Algebras.

8. Verify that a generic element of SO(1, 1) can be written as

M =

(
coshα sinhα

sinhα coshα

)
.

9. Calculate to the third order (one more to what explicitly done in class) the product:

etXtesXs

being Xt and Xs two generic element of the Algebra (not necessarily commuting).

10. Find explicitly the conditions satisfied by the generators of the Lie Algebras of U(n),

SU(n), SO(n) and SO(p, q).

11. Let σi be the Pauli σ–matrices, then compute the following exponents

M1 = eiα1σ1 , M3 = eiα3σ3 , M = ei~α·~σ

12. Write explicitly the generators of SO(2) and SO(3);

13. Show that SO(3) is locally isomorphic to SU(2), i.e. show that the corresponding Algebras

are isomorphic: so(3) ' su(2);

14. Write the Adjoint representation for the su(2) Algebra.

15. Three dimensional irreducible representation of SU(2).

• using the rules given in class, derive the SU(2) generators in the three dimensional

representation;

• Verify explicitly the commutation relations between them;

• Determine the Cartan–Killing form gij and calculate the second order SU(2) Casimir;



16. Construction of the so(n) Algebra. We can proceed as follows

• Set the m-th row and n-th column element to be 1. Then by antisymmetry the

n-th row and m-th column element is set to be −1. Coll J(mn) the corresponding

generator. Then call J(mn) = iJ(mn) the corresponding Hermitian generator;

• Show that (
J(mn)

)ij
= −i

(
δmiδnj − δmjδni

)
• Convince yourself that there are only n(n− 1)/2 independent matrices J(mn);

• By looking to n = 3 of n = 4 case verify that the following commutation relations

hold: [
J(mn), J(pq)

]
= i
(
δmpJ(nq) + δnqJ(mp) − δnpJ(mq) − δmqJ(np)

)
17. Show that SO(4) is locally isomorphic to SU(2)⊗SU(2), i.e. show that the corresponding

Algebras are isomorphic: so(4) ' su(2)⊕ su(2);

18. Compute the exponent of the following matrices

M =

0 0 α

0 0 0

α 0 0

 , N =

 0 0 α

0 0 0

−α 0 0


19. Find the generators of SU(3) (they are called Gell–Mann matrices).

• Mimicking the SU(2) case try to write a set of 8 Hermitian and traceless 3 × 3

matrices;

• Realize that there are 3 different sub–algebras (not all three independent why ?);

• Calculate explicitly the constant structure for SU(3);

• Show that the following operator is a Casimir for SU(3)

C1 =
8∑
i=1

λ2i =
16

3
1

20. Build the Adjoint representation of su(3).



4 Poincarè Group and Algebra

1. The Poincarè group is defined as P = O(1, 3) o R4

• Verify that P is a group;

• Verify that R4 is a normal subgroup of P ;

• Verify that O(1, 3) is not a normal subgroup of P ;

• Argument why P is not a compact or connected group;

2. Show that translations are an Abelian subgroup of the Poincarè group, while rotations

or rotations and translations do not commute.

3. Verify that the generators of the Lorentz algebra in the defining representation satisfy

the following commutation relations:

[Jµν , Jρσ] = i (ηµρJνσ + ηνσJµρ − ηνρJµσ − δµσJνρ)

and comment the similarity with the commutation relation for SO(4).

4. Derive the commutator relations between the Lorentz algebra generators in a generic

representation.

5. Derive the commutator relations in terms of generators of boosts and 3-dimensional ro-

tations.

6. Verify that the generators of Lorentz boots and rotations, in the defining representations

are:

K1 = −i


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , K2 = −i


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , K3 = −i


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0



J1 = i


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 , J2 = i


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , J3 = i


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0


7. Derive the commutator relations between the Poincarè algebra generators in a generic

representation.


