Theoretical Physics: Group Theory

1 General Definitions

1. Identify the symmetries of an isoscele triangle and of an equilateral triangle.
2. The Dihedral Group D_{n}, for $n \geq 3$ is given by the set of transformations that leave the n -sided regular polygon invariant. The group is generated by the rotation R of angle $2 \pi / n$ and the reflection r with respect to the median. Clearly $R^{n}=\mathbb{1}$ and $r^{2}=\mathbb{1}$.

- Verify that $r \cdot R \cdot r=R^{-1}$;
- Show that D_{n} has $2 n$ elements;
- Verify explicitly the above statements for D_{4} (Box) and D_{5} (Pentagon);

3. Prove that the N -roots of 1 form a group, called Z_{N}.

- Verify that Z_{N} has order N .
- Show that $Z_{2} \otimes Z_{2} \neq Z_{4}$ and $Z_{2} \otimes Z_{4} \neq Z_{8} ;$
- Verify that $Z_{2} \subset Z_{4}$ but $Z_{2} \nsubseteq Z_{5}$;
- Verify that the set of elements $\{1, i,-1\}$ is not a group;

4. Let S_{n} be the group of permutation of N objects and A_{n} the group of even permutations:

- Which is the order of S_{n} and A_{n} ?
- Show that for $m<n$ one has that $S_{m} \subset S_{n}$;
- Verify that $A_{n} \subset S_{n}$;
- Show that S_{4} is not simple;
- Show that A_{4} is an invariant subgroup of S_{4};

2 Groups Representations

1. Consider the group Z_{2}.

- Write the trivial, the 1-dimensional and the 2-dimensional representations;
- Find explicitly a 2 -dimensional representation for Z_{2};
- Show that the 2-dimensional representation is completely reducible;

2. Consider the group Z_{3}.

- Write the trivial, the 1-dimensional and the 3-dimensional representations;
- Show that the following matrices form a representation of Z_{3} :

$$
D(e)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad, \quad D(\omega)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad, \quad D\left(\omega^{2}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

- Show that this representation is completely reducible;

3. Write a generic element of $S O(2)$ in the 2-dimensional representation.
4. Write a generic element of $S U(2)$ in the 2-dimensional representation.
5. Write a generic element of $S O(3)$ in the 3-dimensional representation, and show that $S O(2) \subset S O(3)$.
6. Suppose that D_{1} and D_{2} are equivalent, irreducible representations of a finite group G, such that

$$
D_{2}(g)=S D_{1}(g) S^{-1} \quad \forall g \in G
$$

What you can say about and operator A that satisfies

$$
A D_{1}(g)=D_{2}(g) A \quad \forall g \in G ?
$$

3 Lie Groups and Algebra

1. Show that $G L(n, \mathbb{R})$ is a Lie group of dimension n^{2}.
2. Show that $S U(n)$ is a Lie group of dimension $n^{2}-1$.
3. Show that $U(n)$ is not isomorphic to $U(1) \times S U(n)$. In particular show that the identity of $U(n)$ can be obtained in n different ways as product of $U(1)$ and $S U(n)$ elements. Show instead that the associated Lie Algebras are isomorphic.
4. Show that $S p(2 n, \mathbb{R})$ is a group. In particular show that if $M \in S p(2 n, \mathbb{R})$ also $M^{-1} \in$ $S p(2 n, \mathbb{R})$. Moreover show also that also $M^{T} \in S p(2 n, \mathbb{R})$.
5. Show that the Poisson bracket of a QM system with n d.o.f are invariant under a symplectic transformation $S p(2 n, \mathbb{R})$.
6. Show that the dimension of $\operatorname{Sp}(2 n, \mathbb{R})$ is $n(2 n+1)$.
7. Show that $S p(2) \simeq S L(2, \mathbb{R})$. Describe the associated Algebras.
8. Verify that a generic element of $S O(1,1)$ can be written as

$$
M=\left(\begin{array}{ll}
\cosh \alpha & \sinh \alpha \\
\sinh \alpha & \cosh \alpha
\end{array}\right)
$$

9. Calculate to the third order (one more to what explicitly done in class) the product:

$$
e^{t X_{t}} e^{s X_{s}}
$$

being X_{t} and X_{s} two generic element of the Algebra (not necessarily commuting).
10. Find explicitly the conditions satisfied by the generators of the Lie Algebras of $U(n)$, $S U(n), S O(n)$ and $S O(p, q)$.
11. Let σ_{i} be the Pauli σ-matrices, then compute the following exponents

$$
M_{1}=e^{i \alpha_{1} \sigma_{1}} \quad, \quad M_{3}=e^{i \alpha_{3} \sigma_{3}} \quad, \quad M=e^{i \vec{\alpha} \cdot \vec{\sigma}}
$$

12. Write explicitly the generators of $S O(2)$ and $S O(3)$;
13. Show that $S O(3)$ is locally isomorphic to $S U(2)$, i.e. show that the corresponding Algebras are isomorphic: $s o(3) \simeq s u(2)$;
14. Write the Adjoint representation for the $s u(2)$ Algebra.
15. Three dimensional irreducible representation of $S U(2)$.

- using the rules given in class, derive the $S U(2)$ generators in the three dimensional representation;
- Verify explicitly the commutation relations between them;
- Determine the Cartan-Killing form $g^{i j}$ and calculate the second order $S U(2)$ Casimir;

16. Construction of the so(n) Algebra. We can proceed as follows

- Set the m-th row and n-th column element to be 1 . Then by antisymmetry the n -th row and m-th column element is set to be -1 . Coll $\mathcal{J}_{(m n)}$ the corresponding generator. Then call $J_{(m n)}=i \mathcal{J}_{(m n)}$ the corresponding Hermitian generator;
- Show that

$$
\left(J_{(m n)}\right)^{i j}=-i\left(\delta^{m i} \delta^{n j}-\delta^{m j} \delta^{n i}\right)
$$

- Convince yourself that there are only $n(n-1) / 2$ independent matrices $J_{(m n)}$;
- By looking to $n=3$ of $n=4$ case verify that the following commutation relations hold:

$$
\left[J_{(m n)}, J_{(p q)}\right]=i\left(\delta_{m p} J_{(n q)}+\delta_{n q} J_{(m p)}-\delta_{n p} J_{(m q)}-\delta_{m q} J_{(n p)}\right)
$$

17. Show that $S O(4)$ is locally isomorphic to $S U(2) \otimes S U(2)$, i.e. show that the corresponding Algebras are isomorphic: so $(4) \simeq s u(2) \oplus s u(2)$;
18. Compute the exponent of the following matrices

$$
M=\left(\begin{array}{ccc}
0 & 0 & \alpha \\
0 & 0 & 0 \\
\alpha & 0 & 0
\end{array}\right) \quad, \quad N=\left(\begin{array}{ccc}
0 & 0 & \alpha \\
0 & 0 & 0 \\
-\alpha & 0 & 0
\end{array}\right)
$$

19. Find the generators of $S U(3)$ (they are called Gell-Mann matrices).

- Mimicking the $S U(2)$ case try to write a set of 8 Hermitian and traceless 3×3 matrices;
- Realize that there are 3 different sub-algebras (not all three independent why ?);
- Calculate explicitly the constant structure for $S U(3)$;
- Show that the following operator is a Casimir for $S U(3)$

$$
C_{1}=\sum_{i=1}^{8} \lambda_{i}^{2}=\frac{16}{3} \mathbb{1}
$$

20. Build the Adjoint representation of $s u(3)$.

4 Poincarè Group and Algebra

1. The Poincarè group is defined as $\mathcal{P}=O(1,3) \rtimes \mathbb{R}^{4}$

- Verify that \mathcal{P} is a group;
- Verify that \mathbb{R}^{4} is a normal subgroup of \mathcal{P};
- Verify that $O(1,3)$ is not a normal subgroup of \mathcal{P};
- Argument why \mathcal{P} is not a compact or connected group;

2. Show that translations are an Abelian subgroup of the Poincarè group, while rotations or rotations and translations do not commute.
3. Verify that the generators of the Lorentz algebra in the defining representation satisfy the following commutation relations:

$$
\left[\mathcal{J}_{\mu \nu}, J_{\rho \sigma}\right]=i\left(\eta_{\mu \rho} \mathcal{J}_{\nu \sigma}+\eta_{\nu \sigma} \mathcal{J}_{\mu \rho}-\eta_{\nu \rho} \mathcal{J}_{\mu \sigma}-\delta_{\mu \sigma} \mathcal{J}_{\nu \rho}\right)
$$

and comment the similarity with the commutation relation for $S O(4)$.
4. Derive the commutator relations between the Lorentz algebra generators in a generic representation.
5. Derive the commutator relations in terms of generators of boosts and 3-dimensional rotations.
6. Verify that the generators of Lorentz boots and rotations, in the defining representations are:

$$
\begin{array}{ll}
K_{1}=-i\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad K_{2}=-i\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad K_{3}=-i\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
0 & 0
\end{array} 0
$$

7. Derive the commutator relations between the Poincarè algebra generators in a generic representation.
