Fisica Teorica B: Exercise Set N. 2

3 Dirac Relativistic Equation and γ matrices

1. Show that imposing hermiticity and consistency with the Klein-Gordon equation one obtains the following constraints on the α_{i} and β matrices:

$$
\begin{array}{rll}
\alpha_{i}^{\dagger}=\alpha_{i} & , & \beta^{\dagger}=\beta \\
\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j} & , & \left\{\alpha_{i}, \beta\right\}=0 \quad, \quad \beta^{2}=\mathbb{1}
\end{array}
$$

2. From the above properties, show that α_{i}, β are traceless and they must be $N \times N$ matrices with N any even number;
3. Show that it is not possible to find 4 independent anticommuting matrices α_{i}, β for $N=2$;
4. Define the Dirac matrices γ as $\gamma^{0}=\beta$ and $\gamma^{i}=\beta \alpha_{i}$. Then
(a) Derive the properties of the γ^{μ} matrices starting from those of α_{i}, β. In particular show that

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \quad \text { and } \quad \gamma^{0} \gamma^{\mu} \gamma^{0}=\left(\gamma^{\mu}\right)^{\dagger}
$$

(b) Being C a nonsingular $N \times N$ matrix, show that it is always possible to define a new set of gamma matrices $\widetilde{\gamma}^{\mu}=C^{-1} \gamma^{\mu} C$ that satisfies the conditions of point a);
(c) The Pauli representation is defined by the following set of γ matrices:

$$
\gamma^{0}=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right) \quad, \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) \quad, \quad \gamma^{5}=\left(\begin{array}{ll}
0 & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right)
$$

while the Weyl representation is defined by:

$$
\gamma^{0}=\left(\begin{array}{ll}
0 & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right) \quad, \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) \quad, \quad \gamma^{5}=\left(\begin{array}{cc}
-\mathbb{1} & 0 \\
0 & \mathbb{1}
\end{array}\right)
$$

Show that it is possible to connect Pauli and Weyl γ matrices representations by mean of a unitary transformation $C^{\dagger} \gamma_{P} C=\gamma_{W}$. Write C explicitly;

5. Spinorial representation:

(a) By using the explicit expression of the Lorentz transformation matrix in spinorial representation $S(\Lambda)=\exp \left[-\frac{i}{2} \omega_{\mu \nu} \Sigma^{\mu \nu}\right]$, with $\Sigma^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$, show that γ^{μ} transforms under a Lorentz transformation as $S^{-1}(\Lambda) \gamma^{\mu} S(\Lambda)=\Lambda^{\mu}{ }_{\nu} \gamma^{\nu}$. You may use the infinitesimal form of the Lorentz transformations and prove it at first order;
(b) Show that γ_{5} under a Lorentz transformation transforms as $S^{-1}(\Lambda) \gamma_{5} S(\Lambda)=\operatorname{det} \Lambda \gamma_{5}$. Use the following expression for γ^{5} :

$$
\gamma^{5}=\frac{i}{4!} \epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}
$$

(c) Show that $\Sigma^{\mu \nu}$ satisfies the $s o(1,3)$ commutation rules;
(d) Find the explicit expressions for the spin and boost matrices in the spinorial representation (you may use either the Pauli or Weyl representation for the Dirac matrices):

$$
\Sigma_{i}=\frac{1}{2} \epsilon_{i j k} \Sigma^{j k} \quad, \quad K^{i}=\Sigma^{0 i}
$$

(e) Prove that Σ_{i} satisfy the following spin relations:

$$
\left[\Sigma_{i}, \Sigma_{j}\right]=i \epsilon_{i j k} \Sigma_{k} \quad, \quad|\vec{\Sigma}|^{2}=-\frac{3}{4} \mathbb{1}
$$

(f) Verify that the spin projection along an axis is not a good quantum number by calculating the commutator with the Dirac wave equation Hamiltonian $\left[H, \Sigma_{3}\right]$. Verify instead that the helicity is a good quantum number, i.e. $[H, \vec{\Sigma} \cdot \vec{p}]=0$;
(g) From the general expression of the Pauli-Lubanski pseudo-vector W^{μ}, show that

$$
\frac{W^{\mu} n_{\mu}^{(p)}}{M}=-\frac{1}{2 M} \gamma^{5} \not h p \quad, \quad n^{(p)}=\left(\frac{|\vec{p}|}{M}, \frac{\omega_{p}}{M} \frac{\vec{p}}{|\vec{p}|}\right)
$$

6. Dirac wave equation:
(a) Write the Dirac equation for the Dirac conjugate spinor $\bar{\psi}(x)$;
(b) Show that if the Dirac spinor transforms as $\psi^{\prime}\left(x^{\prime}\right)=S(\Lambda) \psi(x)$ then the Dirac conjugate $\bar{\psi}$ transforms as $\bar{\psi}^{\prime}\left(x^{\prime}\right)=\bar{\psi}(x) S^{-1}(\Lambda)$. Prove that $S^{-1}(\Lambda)=\gamma_{0} S^{\dagger}(\Lambda) \gamma_{0} ;$
(c) Derive the continuity equation associated to the Dirac equation and the associated conserved charge;
(d) Derive the equation of motion for the chiral spinors $\psi_{L, R}(x)$:

$$
\psi_{L}(x)=\left(\frac{1-\gamma_{5}}{2}\right) \psi(x) \quad, \quad \psi_{R}(x)=\left(\frac{1+\gamma_{5}}{2}\right) \psi(x)
$$

and show that they decouple in the $M=0$ limit;
7. Spinors in momentum space
(a) Find the general form of the spinors $u_{r}(k), v_{r}(k)$ using the Weyl representation for the Dirac matrices and compare it with the results obtained in class in the Pauli representation;
(b) Prove the following identities:

$$
u_{\alpha}^{\dagger}(k) u_{\beta}(k)=2 \omega_{k} \delta_{\alpha \beta} \quad, \quad v_{\alpha}^{\dagger}(k) v_{\beta}(k)=2 \omega_{k} \delta_{\alpha \beta} \quad, \quad u_{\alpha}^{\dagger}(k) v_{\beta}(-k)=v_{\alpha}^{\dagger}(-k) u_{\beta}(k)=0
$$

(c) Knowing the general expressions of the spinors $u_{r}(k), v_{r}(k)$ show the relations:

$$
\Lambda_{+}(k)=\frac{1}{2 M} \sum_{r} u_{r}(k) \bar{u}_{r}(k) \quad, \quad \Lambda_{-}(k)=-\frac{1}{2 M} \sum_{r} v_{r}(k) \bar{v}_{r}(k)
$$

(d) Knowing the expression of the general solution of the Dirac equation (and its conjugate):

$$
\psi(x)=\frac{1}{(2 \pi)^{3}} \int \frac{d^{3} k}{\sqrt{2 \omega_{k}}} \sum_{r}\left[c_{r}(k) u_{r}(k) e^{-i k \cdot x}+d_{r}^{*}(k) v_{r}(k) e^{i k \cdot x}\right]_{k_{0}=\omega_{k}}
$$

derive the expressions for $c_{r}^{(*)}(k), d_{r}^{(*)}(k)$ in terms of $\psi(x), \bar{\psi}(x)$;
(e) Knowing that the spinors $u_{r}(M), v_{r}(M)$ in the mass rest frame are eigenstates of Σ_{3}, show that in the frame where $\vec{k}=(0,0, k)$ the spinors $u_{r}(k), v_{r}(k)$ are eigenstates of the helicity operator $\vec{\Sigma} \cdot \vec{k} /|k|$:

$$
2 \frac{\vec{\Sigma} \cdot \vec{k}}{|k|} u_{r}(k)=(-1)^{r+1} u_{r}(k) \quad, \quad 2 \frac{\vec{\Sigma} \cdot \vec{k}}{|k|} v_{r}(k)=(-1)^{r+1} v_{r}(k)
$$

(f) Determine the Dirac spinor solutions in the mass rest frame with the spin oriented along a generic direction \vec{n};
8. Dirac bilinears:
(a) By knowing the transformation properties of $\psi(x), \bar{\psi}(x), \gamma_{\mu}$ and γ_{5} under a Lorentz (and spinorial) transformation, determine the Lorentz transformation properties of the following bilinears:
$\bar{\psi}(x) \psi(x) \quad, \quad \bar{\psi}(x) \gamma_{5} \psi(x) \quad, \quad \bar{\psi}(x) \gamma_{\mu} \psi(x) \quad, \quad i \bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x) \quad, \quad \bar{\psi}(x) \sigma_{\mu \nu} \psi(x)$
with $\sigma_{\mu \nu}=\frac{i}{2}\left[\gamma_{\mu}, \gamma_{\nu}\right]$.
(b) Without using any explicit Dirac matrices representation show that:

$$
\bar{u}(p) \sigma^{\mu \nu}(p+k)_{\nu} u(k)=i(p-k)^{\mu} \bar{u}(p) u(k)
$$

(c) Without using any explicit Dirac matrices representation show the Gordon identities:

$$
\begin{aligned}
\bar{u}(p) \gamma^{\mu} u(k) & =+\frac{1}{2 M} \bar{u}(p)\left[(p+k)^{\mu}+i \sigma^{\mu \nu}(p-k)_{\nu}\right] u(k) \\
\bar{v}(p) \gamma^{\mu} v(k) & =-\frac{1}{2 M} \bar{v}(p)\left[(p+k)^{\mu}+i \sigma^{\mu \nu}(p-k)_{\nu}\right] v(k)
\end{aligned}
$$

(d) Consider the current $J_{\mu}\left(p_{1}, p_{2}\right)=\bar{u}\left(p_{2}\right) p_{1} \gamma_{\mu} p_{2} u\left(p_{1}\right)$. Show that J_{μ} can be written as:

$$
J_{\mu}=\bar{u}\left(p_{2}\right)\left[F_{1}\left(q^{2}, M\right) \gamma_{\mu}+F_{2}\left(q^{2}, M\right) \sigma_{\mu \nu} q^{\nu}\right] u\left(p_{1}\right)
$$

with $q^{\mu}=p_{2}^{\mu}-p_{1}^{\mu}$. Determine the functions $F_{1}\left(q^{2}, M\right), F_{2}\left(q^{2}, M\right)$;
(e) Consider the current $J_{\mu}\left(p_{1}, p_{2}\right)=\bar{u}\left(p_{2}\right) p^{\rho} q^{\nu} \sigma_{\mu \rho} \gamma_{\nu} u\left(p_{1}\right)$, with $p^{\mu}=p_{2}^{\mu}+p_{1}^{\mu}$ and $q^{\mu}=$ $p_{2}^{\mu}-p_{1}^{\mu}$. Show that J_{μ} can be written as:

$$
J_{\mu}=\bar{u}\left(p_{2}\right)\left[F_{1}\left(q^{2}, M\right) \gamma_{\mu}+F_{2}\left(q^{2}, M\right) q_{\mu}+F_{3}\left(q^{2}, M\right) \sigma_{\mu \nu} q^{\nu}\right] u\left(p_{1}\right)
$$

and determine the functions $F_{1}\left(q^{2}, M\right), F_{2}\left(q^{2}, M\right), F_{3}\left(q^{2}, M\right)$;

