Fisica Teorica B: Exercise Set N.4

5 Relativistic Free Scalar Field Theory

1. Real scalar field.
(a) Given the Lagrangian density of the free real scalar field theory, obtain the Hamil-
tonian density in terms of the independent “variables” (m, ¢);

(b) Using the explicit expression for the Hamiltonian verify the Hamilton equations in

terms of the Poisson parenthesis:

(c) Write the explicit expression of the conserved currents associated to the Poincaré

invariance and show that they satisfy the continuity equations: a#J(P; = 0;

(d) Write the explicit expression of the conserved charges associated to the Poincaré

invariance;
(e) Given the general solution of the free real KG equation:

(271r)3 j% la(k) e + a*(k) e™"] : k= (wg, k)

calculate the expressions for conserved 4-momentum P* in terms of a(k), a*(k);

¢(r) =

2. Complex scalar field.
(a) Given the Lagrangian density of the free complex scalar field theory, obtain the
Hamiltonian density in terms of the independent “variables” (m, ¢) and (7, ¢*);

(b) Using the explicit expression for the Hamiltonian verify the Hamilton equations in

terms of the Poisson parenthesis:

é(fa t) = {¢(fa t>7H} ) 7%(1_"7 t) = {77-(57 t)>H}
¢(fa t)* = {qb(f’ t)*7H} ) #(f’ t)* = {ﬂ-(fa t)*’H}

(c) Write the explicit expression of the conserved currents associated to the Poincaré

invariance and show that they satisfy the continuity equations: 8,“](‘2 )= 0;



(d) Write the explicit expression of the conserved charges associated to the Poincaré

invariance;

(e) Given the general solution of the free complex KG equation:
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calculate the expressions for the conserved 4-momentum P* and the conserved U(1)
charge Quq) in terms of a(k), b(k), a*(k), b*(k);

o(z) = [a(k)e™ ™ 4 b (k) e™™] . k= (wp k)

3. Equivalence between a complex scalar field and two real fields of same mass m.

Consider the following Lagrangian density:

£= 5(0u60)(0n) = 56+ 5(0,02)(Dn) — S?6% — AGE + )
for the case of two real scalar fields, ¢; and ¢s.
(a) Define a two dimensional (real) vector field ® = (¢, ¢2)T and write the Lagrangian
density in terms of ®;
(b) Find the internal symmetry and the associated conserved currents;

(c¢) Explain why this theory is equivalent to the one with a single complex scalar field.
In particular write the corresponding complex scalar Lagrangian density and derive

the corresponding conserved charges;

4. The previous problem can be generalized to higher dimensional internal groups. As an
example consider the case of a two dimensional complex scalar field ® = (¢y, ¢o)? with
¢1,2 complex scalar fields;

(a) Write the free Lagrangian density;

(b) Find the internal symmetry group, the associated conserved currents and show that

the four conserved charges can be written as
Qo = iq / &Pz [0, 11 — 110, ®]

with o, = (1,5) and II = §y®T, II" = 9y® the conjugate momenta;

(c) Establish a relation with a theory with only real scalar fields (i.e. how many? which

internal symmetry? ...);



5. Consider the Lagrangian density:

1 1 1
£ = 5(0,0)(0"6) = 5m*¢* = 120"

(a) Calculate the Noether current for the dilatation transformation (with a a real con-
stant):

st = axt , 0p = —ag

(b) Show that the dilatation current is conserved only if m = 0;
6. Quantization of a real scalar field.

(a) Verify that the evolution of ¢ and 7 satisfies the relations:
O t) = —i[o(z,0), H] . #(@1) = —i[r(,1), H]

(b) Derive the expressions for a(k),af(k) in terms of ¢, ;

(c) Verify that imposing the following commutation relations:

la(k).a'(p)] =*(k—=p) ,  [a(k),a(p)] = [a(k),a(p)] =0

one obtains the canonical commutation relations for the operators ¢, 7;
(d) Verify that the operator P* is conserved;

(e) Prove that 2w;0%(k — p) is invariant under Lorentz transformations;
7. Quantization of a complex scalar field.

(a) Derive the expressions for a(k),af(k),b(k), b (k) in terms of ¢, 7(1);

(b) Derive the expression of the conserved charge Qy 1) in terms of a(k), b(k) operators;
8. Covariant Commutators.

(a) Show that for real and complex scalar field one has, respectively:
[b(x),0()] = D(x—y) ,  [¢(x),6'(y)] = D(x —y)

(b) Show explicitly that D(x — y) is invariant under (proper) Lorentz transformations

and that it vanishes on a space-like interval (i.e. for example D(0, ) = 0);



(c) For real and complex scalar fields derive the expression for the following covariant

commutator [¢(x), 7(y)];

(d) Verify the following properties of D(xz — y):

a) D(—x) = —=D(x)

b) (O+m*)D(x) =0

c) 0D ()] g0 = —0°(x)
d) 9;D(2)]0=0 = 0

(e) Given the following observable (for a complex scalar field) O(z) = ¢f(x)¢(z), verify

that (micro)causality condition is satisfied, i.e. one has that:
[O(),0(y)]=0 if (z—y)*<0

(f) Using the previous example, show that (micro)causality condition is not satisfied if

one quantizes the (compelex) scalar field using anticommutation relations;

(g) Verify that for a real scalar field the momentum operator satisfies (micro)causality

condition, i.e. that one has:



