
Fisica Teorica B: Exercise Set N.4

5 Relativistic Free Scalar Field Theory

1. Real scalar field.

(a) Given the Lagrangian density of the free real scalar field theory, obtain the Hamil-

tonian density in terms of the independent “variables” (π, φ);

(b) Using the explicit expression for the Hamiltonian verify the Hamilton equations in

terms of the Poisson parenthesis:

φ̇(~x, t) = {φ(~x, t), H} , π̇(~x, t) = {π(~x, t), H}

(c) Write the explicit expression of the conserved currents associated to the Poincaré

invariance and show that they satisfy the continuity equations: ∂µJ
µ
(a) = 0;

(d) Write the explicit expression of the conserved charges associated to the Poincaré

invariance;

(e) Given the general solution of the free real KG equation:

φ(x) =
1

(2π)3

∫
d3k√
2ωk

[
a(k) e−ik·x + a∗(k) eik·x

]
, k = (ωk, ~k)

calculate the expressions for conserved 4-momentum P µ in terms of a(k), a∗(k);

2. Complex scalar field.

(a) Given the Lagrangian density of the free complex scalar field theory, obtain the

Hamiltonian density in terms of the independent “variables” (π, φ) and (π∗, φ∗);

(b) Using the explicit expression for the Hamiltonian verify the Hamilton equations in

terms of the Poisson parenthesis:

φ̇(~x, t) = {φ(~x, t), H} , π̇(~x, t) = {π(~x, t), H}

φ̇(~x, t)∗ = {φ(~x, t)∗, H} , π̇(~x, t)∗ = {π(~x, t)∗, H}

(c) Write the explicit expression of the conserved currents associated to the Poincaré

invariance and show that they satisfy the continuity equations: ∂µJ
µ
(a) = 0;



(d) Write the explicit expression of the conserved charges associated to the Poincaré

invariance;

(e) Given the general solution of the free complex KG equation:

φ(x) =
1

(2π)3

∫
d3k√
2ωk

[
a(k) e−ik·x + b∗(k) eik·x

]
, k = (ωk, ~k)

calculate the expressions for the conserved 4-momentum P µ and the conserved U(1)

charge QU(1) in terms of a(k), b(k), a∗(k), b∗(k);

3. Equivalence between a complex scalar field and two real fields of same mass m.

Consider the following Lagrangian density:

L =
1

2
(∂µφ1)(∂

µφ1)−
1

2
m2φ2

1 +
1

2
(∂µφ2)(∂

µφ2)−
1

2
m2φ2

2 −
1

16
λ(φ2

1 + φ2
2)

2

for the case of two real scalar fields, φ1 and φ2.

(a) Define a two dimensional (real) vector field Φ = (φ1, φ2)
T and write the Lagrangian

density in terms of Φ;

(b) Find the internal symmetry and the associated conserved currents;

(c) Explain why this theory is equivalent to the one with a single complex scalar field.

In particular write the corresponding complex scalar Lagrangian density and derive

the corresponding conserved charges;

4. The previous problem can be generalized to higher dimensional internal groups. As an

example consider the case of a two dimensional complex scalar field Φ = (φ1, φ2)
T with

φ1,2 complex scalar fields;

(a) Write the free Lagrangian density;

(b) Find the internal symmetry group, the associated conserved currents and show that

the four conserved charges can be written as

Q(µ) = iq

∫
d3x

[
Φ†σµΠ† − ΠσµΦ

]
with σµ ≡ (1, ~σ) and Π = ∂0Φ

†,Π† = ∂0Φ the conjugate momenta;

(c) Establish a relation with a theory with only real scalar fields (i.e. how many? which

internal symmetry? . . .);



5. Consider the Lagrangian density:

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − 1

4!
λφ4

(a) Calculate the Noether current for the dilatation transformation (with α a real con-

stant):

δxµ = αxµ , δφ = −αφ

(b) Show that the dilatation current is conserved only if m = 0;

6. Quantization of a real scalar field.

(a) Verify that the evolution of φ and π satisfies the relations:

φ̇(~x, t) = −i [φ(~x, t), H] , π̇(~x, t) = −i [π(~x, t), H]

(b) Derive the expressions for a(k), a†(k) in terms of φ, π;

(c) Verify that imposing the following commutation relations:[
a(k), a†(p)

]
= δ3(~k − ~p) , [a(k), a(p)] =

[
a†(k), a†(p)

]
= 0

one obtains the canonical commutation relations for the operators φ, π;

(d) Verify that the operator P µ is conserved;

(e) Prove that 2ωkδ
3(~k − ~p) is invariant under Lorentz transformations;

7. Quantization of a complex scalar field.

(a) Derive the expressions for a(k), a†(k), b(k), b†(k) in terms of φ(†), π(†);

(b) Derive the expression of the conserved charge QU(1) in terms of a(k), b(k) operators;

8. Covariant Commutators.

(a) Show that for real and complex scalar field one has, respectively:

[φ(x), φ(y)] = D(x− y) ,
[
φ(x), φ†(y)

]
= D(x− y)

(b) Show explicitly that D(x − y) is invariant under (proper) Lorentz transformations

and that it vanishes on a space-like interval (i.e. for example D(0, ~x) = 0);



(c) For real and complex scalar fields derive the expression for the following covariant

commutator [φ(x), π(y)];

(d) Verify the following properties of D(x− y):

a) D(−x) = −D(x)

b) (� +m2)D(x) = 0

c) ∂0D(x)|x0=0 = −δ3(x)

d) ∂iD(x)|x0=0 = 0

(e) Given the following observable (for a complex scalar field) O(x) = φ†(x)φ(x), verify

that (micro)causality condition is satisfied, i.e. one has that:

[O(x),O(y)] = 0 if (x− y)2 < 0

(f) Using the previous example, show that (micro)causality condition is not satisfied if

one quantizes the (compelex) scalar field using anticommutation relations;

(g) Verify that for a real scalar field the momentum operator satisfies (micro)causality

condition, i.e. that one has:

[Pi(x),Pj(y)] = 0 if (x− y)2 < 0


