Fisica Teorica B: Exercise Set N.5

6 Relativistic free Dirac field theory

- 1. Classical Free Dirac Field Theory:
 - (a) From the Dirac Lagrangian

$$\mathcal{L} = \frac{i}{2} \left[\bar{\psi} \gamma^{\mu} (\partial_{\mu} \psi) - (\partial_{\mu} \bar{\psi}) \gamma^{\mu} \psi \right] - M \bar{\psi} \psi$$

derive the Eulero-Lagrange equations of motions for ψ and $\bar{\psi}$;

(b) Show that the following Lagrangian

$$\mathcal{L}' = i\bar{\psi}\gamma^{\mu}(\partial_{\mu}\psi) - M\bar{\psi}\psi \equiv \bar{\psi}(i\partial \!\!\!/ - M)\psi$$

is equivalent to \mathcal{L} ;

- (c) Derive the canonical energy-momentum tensor $\tilde{T}^{\mu\nu}$ and show explicitly that it is a conserved current, i.e. $\partial_{\mu}\tilde{T}^{\mu\nu}=0$. Show that also $\partial_{\nu}\tilde{T}^{\mu\nu}=0$;
- (d) Derive the expressions of the conserved charges P^{μ} . Show in particular that the Hamiltonian obtained starting from \mathcal{L} and \mathcal{L}' are equivalent;
- (e) Derive the expressions of the conserved charges $J_{\rho\sigma}$ associated to the invariance under Lorentz infinitesimal transformations. In particular convince yourself that the total angular momentum is associated to a spin 1/2 particle;
- (f) Show that the Dirac Lagrangian is invariant under a global internal U(1) symmetry. Derive the associated conserved charge;
- (g) Derive the Poisson parenthesis between the Dirac field and the conjugate field:

$$\{\psi_{\alpha}(x), \psi_{\beta}(y)\}_{E.T.} = 0 = \{\pi_{\alpha}(x), \pi_{\beta}(y)\}_{E.T.}$$
$$\{\psi_{\alpha}(x), \pi_{\beta}(y)\}_{E.T.} = i\delta^{3}(\vec{x} - \vec{y})$$

Moreover shows that the Hamilton equations of motions can be written as:

$$\dot{\psi}(\vec{x},t) = \{\psi(\vec{x},t), H\} \quad , \quad \dot{\pi}(\vec{x},t) = \{\pi(\vec{x},t), H\}$$

- 2. Quantization of free Dirac field (with anti-commutators):
 - (a) Derive the expression of $c_r(k)$ $(c_r^{\dagger}(k))$ and $d_r(k)$ $(d_r^{\dagger}(k))$ in terms of ψ and $\bar{\psi}$;
 - (b) From the canonical anti-commutation rules for the Dirac fields $\psi, \bar{\psi}$ derive the anti-commutation rules for the creation/annihilation operators $c_r(k), d_r(k)$;
 - (c) Show that despite of the anti-commuting rules between creation/annihilation operators the operators $N_r^{(c)}(k) = c_r^{\dagger}(k)c_r(k)$ and $N_r^{(d)}(k) = d_r^{\dagger}(k)d_r(k)$ can still be interpreted as density-number operators;
 - (d) Derive the expressions for the conserved charges P^{μ} and $Q_{U(1)}$ in terms of $c_r(k)$, $d_r(k)$. Show that with the appropriate definition of normal ordering (consistently with anti-commutator rules) the Hamiltonian H is positive definite (while Q is not);
 - (e) Show that the evolution equations for $\psi(x)$, $\pi(x)$ satisfy the usual Heisemberg relations: i.e. for classical and quantistic fields one has respectively:

$$\dot{\psi}(\vec{x},t) = -i\left[\psi(\vec{x},t), H\right] \quad , \quad \dot{\pi}(\vec{x},t) = -i\left[\pi(\vec{x},t), H\right]$$

(f) Calculate the anti-commutators (for general space-time points) and show that:

$$\{\psi(x),\psi(y)\} = \{\bar{\psi}(x),\bar{\psi}(y)\} = 0 \quad , \quad \{\psi(x),\bar{\psi}(y)\} = (i\partial\!\!\!/ + m)D(x-y)$$