Fisica Teorica B: Exercise Set N.7

6 QED S-matrix expansion

- 1. S-matrix expansion in coordinate space:
 - (a) Derive all possible terms originating from the QED interaction at first order in perturbation expansion;
 - (b) Expand the second order S-matrix term using Wick theorem and relative corollary. Identify all possible terms with 0, 1, 2 and 3 propagators, and draw a "typical" diagram of that kind;
 - (c) Write all possible terms originating at second order with one fermion propagator. Draw all the possible diagrams and identify all the possible physical $(2 \to 2)$ processes;
 - (d) Write all possible terms originating at second order with one photon propagator. Draw all the possible diagrams and identify all the possible physical $(2 \rightarrow 2)$ processes;
 - (e) Write all possible terms originating at second order with two fermion propagators. Draw all the possible diagrams and identify all the possible physical $(1 \to 1)$ processes;
 - (f) Write all possible terms originating at second order with one fermion and one photon propagator. Draw all the possible diagrams and identify all the possible physical $(1 \rightarrow 1)$ processes;
 - (g) Expand the third order S-matrix term using Wick theorem and relative corollary. Identify all possible terms with 0, 1, 2, 3 and 4 propagators propagators, and draw a "typical" diagram of that kind;
 - (h) Write all possible terms originating at third order with two fermion and one photon propagator. Draw all the possible diagrams and identify all the possible processes;
- 2. S-matrix expansion in momentum space:

(a) Derive the transition amplitude $S_{fi} = \langle f|S|i\rangle$ at the lowest order in perturbation expansion for the following initial and final states:

$$|i\rangle = |e^{-}(p) e^{+}(q)\rangle$$
 , $|f\rangle = |\gamma(k)\rangle$

Show that this process is kinematically forbidden in QED;

(b) Calculate the Feynman amplitude \mathcal{M}_{fi} at third order in perturbation expansion for the following initial and final states:

$$|i\rangle = |e^{-}(p) e^{+}(q)\rangle$$
 , $|f\rangle = |\gamma(k)\rangle$

It could be useful to do before point (h) of the previous exercise.

- (c) Calculate the Feynman amplitude \mathcal{M}_{fi} at second order in perturbation expansion for the following initial and final states:
 - $|i\rangle = |e^{-}(p) e^{+}(q)\rangle$, $|f\rangle = |e^{-}(p') e^{+}(q')\rangle$ 1)
 - 2)
 - $|i\rangle = |e^{+}(p)\gamma(q)\rangle \qquad , \qquad |f\rangle = |e^{+}(p')\gamma(q')\rangle$ $|i\rangle = |e^{-}(p)e^{-}(q)\rangle \qquad , \qquad |f\rangle = |e^{-}(p')e^{-}(q')\rangle$ 3)

In all the processes in which more than one Feynman diagram contribute, explicitly discuss the relative sign between the contributing diagrams;

(d) Calculate the Feynman amplitude \mathcal{M}_{fi} at second order in perturbation expansion for the following initial and final states:

$$|i\rangle = |e^+(q)\rangle$$
 , $|f\rangle = |e^+(q')\rangle$

7 Cross section and Decay Rate

- 1. Cross sections in QED and beyond
 - (a) Show that in the center of mass frame the momentum p'_1 of one of the outgoing particle can be written in terms of the final masses m'_1 , m'_2 and $s = (p_1^2 + p^2)^2$ reads:

$$|p_1'| = \frac{1}{2\sqrt{s}} \left[s^2 + (m_1'^2 - m_2'^2)^2 - 2s(m_1'^2 + m_2'^2) \right]^{1/2}$$

(b) Using the well known γ matrix identity $\gamma_0 \gamma_\mu \gamma_0 = \gamma_\mu^{\dagger}$, show that

$$\left(\bar{u}(p)\gamma^{\mu}u(k)\right)^{*}=\bar{u}(k)\gamma^{\mu}u(p)$$

- (c) Calculate the unpolarized differential cross section for the following processes:
 - 1) $e^-(p)e^+(q) \to \mu^-(p')\mu^+(q')$
 - 2) $e^{-}(p)\mu^{+}(q) \rightarrow e^{-}(p')\mu^{+}(q')$
 - 3) $e^-(p)\mu^-(q) \to e^-(p')\mu^-(q')$
- (d) Calculate the unpolarized differential cross section for the following processes:
 - 1) $e^{-}(p)e^{+}(q) \rightarrow e^{-}(p')e^{+}(q')$
 - 2) $e^-(p)e^-(q) \to e^-(p')e^-(q')$

In all the processes in which more than one Feynman diagram contribute, explicitly discuss the relative sign between the contributing diagrams;

(e) Consider the following interaction between fermions and a real scalar field:

$$\mathcal{L}_{INT} = \varphi \, \bar{\psi}_{\ell} (a_{\ell} + i \, b_{\ell} \, \gamma_5) \psi_{\ell}$$

with a_{ℓ} and b_{ℓ} real (small) parameters.

- i. Show that \mathcal{L}_{INT} is hermitian;
- ii. Derive explicitly the Feynman rule for the interaction described by \mathcal{L}_{INT} . For example consider $|i\rangle = |e^{-}(p)\rangle$ and $|f\rangle = |s(q)e^{-}(k)\rangle$ and explicitly calculate the amplitude $\langle f|S|i\rangle$ at first order;
- iii. Calculate the unpolarized cross section for the process $e^-(p)e^+(q) \to \mu^-(p')\mu^+(q')$, mediated by the Yukawa (scalar) interaction. For simplicity take $a_e = a_\mu$ and $b_e = b_\mu$;
- iv. Compare the angular distribution with the similar process calculated in QED (calculated in point (c));
- 2. Decay rates of elementary processes
 - (a) Show that in the center of rest frame of the decaying particle the momentum p'_1 of one of the outgoing particle can be written in terms of the masses m'_1 , m'_2 and M reads:

$$|p_1'| = \frac{1}{2M} \left[M^4 + (m_1'^2 - m_2'^2)^2 - 2M^2(m_1'^2 + m_2'^2) \right]^{1/2}$$

(b) Consider the following interaction between fermions and a real scalar field:

$$\mathcal{L}_{INT} = \varphi \, \bar{\psi}_{\ell}(a_{\ell} + i \, b_{\ell} \, \gamma_5) \psi_{\ell}$$

with a_{ℓ} and b_{ℓ} real (small) parameters. Calculate the unpolarized decay rate $s(p) \rightarrow e^{-}(p')e^{+}(q')$;

