
Introduction to QED: Suggested Exercises

1 Least Action Principle and Noether Theorem

1. Natural Units and Dimensions:

(a) Using Natural Units, find the dimension (in mass unit) of a scalar field (in 4-

dimensions). Which will be the (mass) dimension of a scalar field in d-dimensions?

(b) Consider the general self–interaction term V (φ) =
∑N
n=2 λnφ

n for a real scalar field.

Which is the dimension (in mass units) of the general coupling λn?

(c) Extend previous analysis to the case of a complex scalar field [Hint: the self–

interaction potential for a complex scalar field must be of the kind V (φ†φ) to be

hermitian . . .].

2. Least Action Principle (finite d.o.f):

(a) The Lagrangian L(q, q̇) is not uniquely defined. Show that L′(q, q̇) = L(q, q̇)+ d
dt
f(q)

(with f function solely of q) and L(q, q̇) give the same equations of motion;

(b) Show that Hamilton equations can be derived from the Least Action Principle;

(c) Verify the following Poisson bracket relations:

q̇(t) = {q(t), H} , ṗ(t) = {p(t), H}

{qi(t), pj(t)} = δij , {qi(t), qj(t)} = {pi(t), pj(t)} = 0

3. Least Action Principle (field):

(a) Prove that L(φ, ∂µφ) and L′(φ, ∂µφ) = L(φ, ∂µφ) + ∂µK(φ) (with K function solely

of the field φ and not of derivatives) are physically equivalent, i.e. provide the same

equations of motion;

(b) Prove the Hamilton equations in all the following forms:

φ̇(~x, t) =
δH

δπ(~x, t)
, π̇(~x, t) = − δH

δφ(~x, t)

φ̇(~x, t) = {φ(~x, t), H} , π̇(~x, t) = {π(~x, t), H}



(c) Prove the following Poissons (equal time) parenthesis:

{φ(~x, t), π(~y, t)} = δ3(x− y)

{φ(~x, t), φ(~y, t)} = {π(~x, t), π(~y, t)} = 0

4. Noether Theorem:

(a) Re–derive the general expressions of the Noether currents and conserved charges (for

internal or spacetime symmetries);

(b) Show that the Noether charges are the generators of the infinitesimal canonical

symmetry transformations:

δ0φ(~x, t) = −{φ(~x, t), εµPµ} = −εµ∂µφ(~x, t)

δ0φ(~x, t) = −{φ(~x, t), ωµνJµν} = ωµν [(xµ∂ν − xν∂µ) + Ωµν ]φ(~x, t)

(c) Verify that Pµ are constant of motion by calculate explicitly {Pµ, H} = 0;

5. Canonical Energy-Momentum tensor.

The Canonical Energy-Momentum tensor T̃µν is not automatically symmetric.

(a) Show that it is always possible to define a tensor

Θµν = T̃ µν + ∂ρA
ρµν

with Aρµν = −Aµρν that still satisfies the continuity equation ∂µΘµν = 0;

(b) Show that it is always possible to define a tensor

Mµ
ρσ = Jµρσ − ∂λ (xρAσµλ − xσAρµλ)

that still satisfies the continuity equation ∂µM
µ
ρσ = 0;

(c) By remembering that Jµρσ = (xρT̃
µ
σ − xσT̃ µρ ) + Ωµ

ρσ, show that it is always possible to

find a way to write Mµ
ρσ in the simpler form:

Mµ
ρσ =

(
xρΘ

µ
σ − xσΘµ

ρ

)
i.e. find the expression of Aµρσ in terms of Ωµρσ that make it happens;

(d) Show that assuming the previous form of Mµ
ρσ one can prove that the tensor Θµν is

symmetric.


