Introduction to QED: Suggested Exercises

2 Relativistic Scalar Field Theory

- 1. Real scalar field.
 - (a) Using the explicit expression for the Hamiltonian:

$$H = \frac{1}{2} \int d^3x \left[\pi^2 + (\nabla \phi)^2 + m^2 \phi^2 \right)$$

verify the Hamilton equations:

$$\dot{\phi}(\vec{x},t) = \{\phi(\vec{x},t), H\}$$
 , $\dot{\pi}(\vec{x},t) = \{\pi(\vec{x},t), H\}$

- (b) Write the explicit expression of the conserved currents associated to the Poincaré invariance and show that they satisfy the continuity equations: $\partial_{\mu}J^{\mu}_{(a)} = 0$;
- (c) Given the general solution of the free real KG equation:

$$\phi(x) = \frac{1}{(2\pi)^3} \int \frac{d^3k}{\sqrt{2\omega_k}} \left[a(k) e^{-ik \cdot x} + a^*(k) e^{ik \cdot x} \right] \qquad , \qquad k = (\omega_k, \vec{k})$$

calculate the expressions for conserved 4-momentum P_{μ} in terms of $a(k), a^{*}(k)$;

- 2. Complex scalar field.
 - (a) Using the explicit expression for the Hamiltonian:

$$H = \int d^3x \left[\pi^* \pi + (\nabla \phi)^* (\nabla \phi) + m^2 \phi^* \phi \right)$$

verify the Hamilton equations:

$$\begin{split} \dot{\phi}(\vec{x},t) &= \{\phi(\vec{x},t),H\} & , & \dot{\pi}(\vec{x},t) &= \{\pi(\vec{x},t),H\} \\ \dot{\phi}(\vec{x},t)^* &= \{\phi(\vec{x},t)^*,H\} & , & \dot{\pi}(\vec{x},t)^* &= \{\pi(\vec{x},t)^*,H\} \end{split}$$

(b) Write the explicit expression of the conserved currents associated to the Poincaré invariance and show that they satisfy the continuity equations: $\partial_{\mu}J^{\mu}_{(a)} = 0$;

(c) Given the general solution of the free complex KG equation:

$$\phi(x) = \frac{1}{(2\pi)^3} \int \frac{d^3k}{\sqrt{2\omega_k}} \left[a(k) e^{-ik \cdot x} + b^*(k) e^{ik \cdot x} \right] , \qquad k = (\omega_k, \vec{k})$$

calculate explicitly the Hamiltonian, the Momentum and the conserved U(1) charge in terms of $a(k), b(k), a^*(k), b^*(k)$;

3. Equivalence between a complex scalar field and two real fields. Consider the following Lagrangian density:

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi_1)(\partial^{\mu} \phi_1) - \frac{1}{2} m^2 \phi_1^2 + \frac{1}{2} (\partial_{\mu} \phi_2)(\partial^{\mu} \phi_2) - \frac{1}{2} m^2 \phi_2^2 - \frac{1}{16} \lambda (\phi_1^2 + \phi_2^2)^2$$

for the case of two real scalar fields, ϕ_1 and ϕ_2 .

- (a) Define a two dimensional vector field $\Phi = (\phi_1, \phi_2)^T$ and write the Lagrangian density in terms of Φ ;
- (b) Find the internal symmetry and the associated conserved currents;
- (c) Explain why this theory is equivalent to the one with a single complex scalar field and write the corresponding complex scalar Lagrangian density;
- 4. The previous problem can be generalized to higher dimensional internal groups. As an example consider the case of a two dimensional complex scalar field $\Phi = (\phi_1, \phi_2)^T$ with $\phi_{1,2}$ complex scalar fields;
 - (a) Write the general Lagrangian density including all possible couplings with mass dimension ≥ 0 ;
 - (b) Find the internal symmetry, the associated conserved currents and show that the four conserved charges can be written as

$$Q_{(\mu)} = iq \int d^3x \left[\Phi^{\dagger} \sigma_{\mu} \Pi^{\dagger} - \Pi \sigma_{\mu} \Phi \right]$$

with $\sigma_{\mu} \equiv (1, \vec{\sigma})$ and $\Pi = \partial_0 \Phi^{\dagger}, \Pi^{\dagger} = \partial_0 \Phi$ the conjugate momenta;

- (c) Establish a relation with a theory with only real scalar fields (i.e. how many? which internal symmetry? ...);
- 5. Consider the Lagrangian density:

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)(\partial^{\mu} \phi) - \frac{1}{2} m^2 \phi^2 - \frac{1}{4!} \lambda \phi^4$$

(a) Calculate the Noether current for the dilatation transformation (with α a real constant):

$$\delta x^{\mu} = \alpha x^{\mu} \qquad , \qquad \delta \phi = -\alpha \phi$$

- (b) Show that the dilatation current is conserved only if m = 0 (while $\lambda \neq 0$ can be kept);
- 6. Quantization of a real scalar field.
 - (a) Verify that the evolution of ϕ and π satisfies the relations:

$$\dot{\phi}(\vec{x},t) = -i \left[\phi(\vec{x},t), H \right] \qquad , \qquad \dot{\pi}(\vec{x},t) = -i \left[\pi(\vec{x},t), H \right] \label{eq:phi}$$

- (b) Derive the expressions for a(k), $a^{\dagger}(k)$ in terms of ϕ , π ;
- (c) Verify that imposing the following commutation relations:

$$[a(k), a^{\dagger}(p)] = \delta^{3}(\vec{k} - \vec{p})$$
 , $[a(k), a(p)] = [a^{\dagger}(k), a^{\dagger}(p)] = 0$

one obtains the canonical commutation relations for the operators ϕ, π ;

- (d) Verify that the operator P^{μ} is conserved;
- (e) Prove that $2\omega_k \delta^3(\vec{k}-\vec{p})$ is invariant under Lorentz transformations;
- 7. Quantization of a complex scalar field.
 - (a) Derive the expressions for $a(k), a^{\dagger}(k), b(k), b^{\dagger}(k)$ in terms of $\phi^{(\dagger)}, \pi^{(\dagger)}$;
 - (b) Derive the expression of the conserved charge $Q_{U(1)}$ in terms of a(k), b(k) operators;
- 8. Covariant Commutators.
 - (a) Show that for real and complex scalar field one has, respectively:

$$[\phi(x), \phi(y)] = D(x - y)$$
 , $[\phi(x), \phi^{\dagger}(y)] = D(x - y)$

- (b) Show explicitly that D(x-y) is invariant under (proper) Lorentz transformations and that it vanishes on a space-like interval (i.e. for example $D(0, \vec{x}) = 0$);
- (c) For real and complex scalar fields derive the expression for the following covariant commutator $[\phi(x), \pi(y)]$;

(d) Verify the following properties of D(x - y):

$$a) D(-x) = -D(x)$$

b)
$$(\Box + m^2)D(x) = 0$$
a)
$$\partial_x D(x) |_{x=0}^{3} \delta^3$$

c)
$$\partial_0 D(x)|_{x_0=0} = -\delta^3(x)$$

$$\partial_i D(x)|_{x_0=0} = 0$$

(e) Given the following observable (for a complex scalar field) $\mathcal{O}(x) = \phi^{\dagger}(x)\phi(x)$, verify that (micro)causality condition is satisfied, i.e. one has that:

$$[\mathcal{O}(x), \mathcal{O}(y)] = 0$$
 if $(x - y)^2 < 0$

- (f) Using the previous example, show that (micro)causality condition is not satisfied if one quantizes the (compelex) scalar field using anticommutation relations;
- (g) Verify that for a real scalar field the momentum operator satisfies (micro)causality condition, i.e. that one has:

$$[\mathcal{P}_i(x), \mathcal{P}_j(y)] = 0$$
 if $(x - y)^2 < 0$