Introduction to QED: Suggested Exercises

2 Relativistic Scalar Field Theory

1. Real scalar field.

(a) Using the explicit expression for the Hamiltonian:

H = %/d?’aj (7% + (V¢)* + m*¢?)

verify the Hamilton equations:

(b) Write the explicit expression of the conserved currents associated to the Poincaré

invariance and show that they satisfy the continuity equations: @J& ) = 0;

(c) Given the general solution of the free real KG equation:
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calculate the expressions for conserved 4-momentum P, in terms of a(k), a*(k);
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2. Complex scalar field.

(a) Using the explicit expression for the Hamiltonian:
H = /d?’x (71 4+ (V)" (Vo) + m*¢™9)
verify the Hamilton equations:

¢(f7 t) = {Cb(f, t)7H} ’ W(f’ t) = {W(fv t)vH}
¢(fa t)* = {QS(‘/E” t)*’H} ) #(f’ t)* = {ﬂ-(fv t)*’H}

(b) Write the explicit expression of the conserved currents associated to the Poincaré

invariance and show that they satisfy the continuity equations: auJ(‘;) = 0;



(c) Given the general solution of the free complex KG equation:
1 d3k
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calculate explicitly the Hamiltonian, the Momentum and the conserved U(1) charge

in terms of a(k),b(k),a*(k),b*(k);

[a(k) e™ ™ b (k) e™] | k= (wpk)

¢(x) =

3. Equivalence between a complex scalar field and two real fields.

Consider the following Lagrangian density:

1 1 1 1 1
L= §(au¢1)(3”¢1) — §m2¢% + 5(@@2)@“@) - §m2¢§ - 1—6)\(¢f + ¢3)?

for the case of two real scalar fields, ¢; and ¢,.
(a) Define a two dimensional vector field ® = (¢, ¢2) and write the Lagrangian density
in terms of ®;
(b) Find the internal symmetry and the associated conserved currents;
(c) Explain why this theory is equivalent to the one with a single complex scalar field

and write the corresponding complex scalar Lagrangian density;

4. The previous problem can be generalized to higher dimensional internal groups. As an
example consider the case of a two dimensional complex scalar field ® = (¢y, ¢)? with

¢1,2 complex scalar fields;

(a) Write the general Lagrangian density including all possible couplings with mass

dimension > 0;

(b) Find the internal symmetry, the associated conserved currents and show that the

four conserved charges can be written as
Q) = iq/d% [(IDTJMHT — HO’MCI)}

with o, = (1,5) and II = 9y®, II" = Jy® the conjugate momenta;

(c) Establish a relation with a theory with only real scalar fields (i.e. how many? which

internal symmetry? ...);

5. Consider the Lagrangian density:
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(a) Calculate the Noether current for the dilatation transformation (with a a real con-
stant):

oxt = axt , 0p = —ag

(b) Show that the dilatation current is conserved only if m = 0 (while A # 0 can be
kept);

6. Quantization of a real scalar field.

(a) Verify that the evolution of ¢ and 7 satisfies the relations:

(b) Derive the expressions for a(k),a'(k) in terms of ¢, ;

(c) Verify that imposing the following commutation relations:

la(k).a' ()] =&*(k—9) ,  [a(k),a(p)] = [a(k),a (p)] =0

one obtains the canonical commutation relations for the operators ¢, ;
(d) Verify that the operator P* is conserved;

(e) Prove that 2w;03(k — ) is invariant under Lorentz transformations;
7. Quantization of a complex scalar field.

(a) Derive the expressions for a(k),af(k),b(k), b (k) in terms of ¢, (1),

(b) Derive the expression of the conserved charge Qu ) in terms of a(k),b(k) operators;
8. Covariant Commutators.

(a) Show that for real and complex scalar field one has, respectively:
[0(z),0(W)] = D(x—y) .,  [6(2),6'(y)] = D(x —y)

(b) Show explicitly that D(z — y) is invariant under (proper) Lorentz transformations

and that it vanishes on a space-like interval (i.e. for example D(0, %) = 0);

(c) For real and complex scalar fields derive the expression for the following covariant

commutator [¢(x), 7(y)];



(d) Verify the following properties of D(z — y):

a) D(—xz) = —D(x)

) (O+m)D() =0

) 0o D (@) |zg=0 = —0°(x)
)

aiD(l')|xO:0 = O

S

)
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(e) Given the following observable (for a complex scalar field) O(z) = ¢'(z)¢(x), verify

that (micro)causality condition is satisfied, i.e. one has that:
[O@),0(W)] =0 if (z-y)*<0

(f) Using the previous example, show that (micro)causality condition is not satisfied if

one quantizes the (compelex) scalar field using anticommutation relations;

(g) Verify that for a real scalar field the momentum operator satisfies (micro)causality

condition, i.e. that one has:



