Introduction to QED: Suggested Exercises

3 Dirac equation and Dirac field theory

1. Dirac matrices:

- (a) Derive the properties of the γ matrices starting from those of α_i, β ;
- (b) Show that it is possible to connect Dirac and Weyl γ matrices representations by mean of a unitary transformation $U^{\dagger}\gamma_D U = \gamma_W$. Write U explicitly;
- (c) Show that if the Dirac field transforms as $\psi'(x') = S(\Lambda)\psi(x)$ then the Dirac conjugate $\bar{\psi}$ transforms as $\bar{\psi}'(x') = \bar{\psi}S^{-1}(\Lambda)$ with $S^{-1}(\Lambda) = \gamma_0 S^{\dagger}(\Lambda)\gamma_0$;
- (d) By using the explicit expression of the Lorentz transformation matrix in spinorial representation $S(\Lambda) = \exp\left[-\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu}\right]$, show that γ^{μ} under a Lorentz transformation transforms as $S^{-1}(\Lambda) \gamma^{\mu} S(\Lambda) = \Lambda^{\mu}{}_{\nu} \gamma^{\nu}$;
- (e) Show that γ_5 under a Lorentz transformation transforms as $S^{-1}(\Lambda) \gamma_5 S(\Lambda) = \det \Lambda \gamma_5$;
- (f) Show that $\Sigma^{\mu\nu}$ satisfies the so(1,3) commutation rules;
- (g) Find the explicit expressions for the spin and boost matrices in the spinorial representation:

$$\Sigma_i = \frac{1}{2} \epsilon_{ijk} \Sigma^{jk} \quad , \quad K^i = \Sigma^{0i}$$

(h) Prove that Σ_i satisfy the following spin relation:

$$[\Sigma_i, \Sigma_j] = i\epsilon_{ijk}\Sigma_k$$
 , $|\vec{\Sigma}|^2 = -\frac{3}{4}\mathbb{1}$

2. Dirac spinors:

- (a) Find the general form of the spinors $u_r(k), v_r(k)$ using the Weyl representation for the Dirac matrices;
- (b) Knowing the general expressions of the spinors $u_r(k), v_r(k)$ show the relations:

$$\Lambda_{+}(k) = \frac{1}{2m} \sum_{r} u_{r}(k) \bar{u}_{r}(k) \quad , \quad \Lambda_{-}(k) = -\frac{1}{2m} \sum_{r} v_{r}(k) \bar{v}_{r}(k)$$

(c) Prove the following identities:

$$u_{\alpha}^{\dagger}(k)u_{\beta}(k) = 2\omega_{k}\delta_{\alpha\beta}$$
 , $v_{\alpha}^{\dagger}(k)v_{\beta}(k) = 2\omega_{k}\delta_{\alpha\beta}$, $u_{\alpha}^{\dagger}(k)v_{\beta}(-k) = v_{\alpha}^{\dagger}(-k)u_{\beta}(k) = 0$

- (d) Show that P^2 and W^2 (with P^{μ} the 4-momentum and $W^{\mu} = -1/2\epsilon^{\mu\nu\rho\sigma}J_{\nu\rho}P_{\sigma}$) are the Casimir operators for the Poincare algebra;
- (e) From the general expression of the Pauli-Lubanski pseudo-vector W^{μ} , show that

$$rac{W^{\mu}n_{\mu}}{m}=rac{1}{2m}\gamma^{5}mp=-rac{1}{2m}\gamma^{5}pp$$

(f) Knowing that the spinors $u_r(m), v_r(m)$ in the mass rest frame are eigenstates of Σ_3 , show that in the frame where $\vec{k} = (0, 0, k)$ the spinors $u_r(k), v_r(k)$ are eigenstates of the helicity operator $\vec{\Sigma} \cdot \vec{k}/|k|$:

$$2\frac{\vec{\Sigma} \cdot \vec{k}}{|k|} u_r(k) = (-1)^{r+1} u_r(k) \quad , \quad 2\frac{\vec{\Sigma} \cdot \vec{k}}{|k|} v_r(k) = (-1)^{r+1} v_r(k)$$

3. Quantization of Dirac field:

- (a) Starting from the Dirac Lagrangian derive the Eulero-Lagrange equations for $\psi(x)$;
- (b) From the canonical anti-commutation rules for the Dirac fields $\psi, \bar{\psi}$ derive the anti-commutation rules for the creation/annihilation operators $c_r(k), d_r(k)$;
- (c) Derive the expressions for the operators $c_r^{(\dagger)}(k), d_r^{(\dagger)}(k)$ in terms of $\psi, \bar{\psi}$;
- (d) Show that despite of the anti-commuting rules between creation/annihilation operators the operators $N_r^{(c)}(k) = c_r^{\dagger}(k)c_r(k)$ and $N_r^{(d)}(k) = d_r^{\dagger}(k)d_r(k)$ can still be interpreted as density-number operators;
- (e) Show explicitly that the canonical energy-momentum tensor $\tilde{T}^{\mu\nu}$ is a conserved current, i.e. $\partial_{\mu}\tilde{T}^{\mu\nu}=0$. Show that also $\partial_{\nu}\tilde{T}^{\mu\nu}=0$
- (f) Derive the expressions for the conserved charges P^{μ} , $Q_{U(1)}$ in terms of $c_r(k)$, $d_r(k)$. Show that the appropriate definition of Normal Ordering H is positive definite (while Q is not);
- (g) Show that the evolution equations for $\psi(x)$, $\pi(x)$ satisfy the usual Hamilton relations, i.e. for classical and quantistic fields one has:

$$\begin{split} \dot{\psi}(\vec{x},t) &= \{\psi(\vec{x},t), H\} \quad , \quad \dot{\pi}(\vec{x},t) = \{\pi(\vec{x},t), H\} \\ \dot{\psi}(\vec{x},t) &= -i \left[\psi(\vec{x},t), H\right] \quad , \quad \dot{\pi}(\vec{x},t) = -i \left[\pi(\vec{x},t), H\right] \end{split}$$

(h) Calculate the anti-commutators (at general times):

$$\{\psi(x), \psi(y)\} = \{\bar{\psi}(x), \bar{\psi}(y)\} = 0$$
 , $\{\psi(x), \bar{\psi}(y)\} = (i\partial \!\!\!/ + m)D(x-y)$

(i) Derive the equation of motion for the chiral fields $\psi_{L,R}(x)$:

$$\psi_L(x) = \left(\frac{1-\gamma_5}{2}\right)\psi(x)$$
 , $\psi_R(x) = \left(\frac{1+\gamma_5}{2}\right)\psi(x)$

and show that they decouple in the m = 0 limit;

4. Dirac bilinears:

(a) By knowing the transformation properties of $\psi(x)$, $\bar{\psi}(x)$, γ_{μ} and γ_{5} show that the transformation properties of the following bilinears:

$$\bar{\psi}(x)\psi(x)$$
 , $\bar{\psi}(x)\gamma_5\psi(x)$, $\bar{\psi}(x)\gamma_\mu\psi(x)$, $\bar{\psi}(x)\gamma_\mu\gamma_5\psi(x)$, $\bar{\psi}(x)\sigma_{\mu\nu}\psi(x)$ with $\sigma_{\mu\nu} = \frac{i}{2} \left[\gamma_\mu, \gamma_\nu\right]$.

- (b) Given the current $J_{\mu}(x) = \bar{\psi}(x)\gamma_{\mu}\psi(x)$, calculate the commutator (at general times): $[J_{\mu}(x), J_{\nu}(y)]$. Show that it vanishes for space-like intervals (i.e. $(x-y)^2 < 0$);
- (c) Without using any explicit Dirac matrices representation show that:

$$\bar{u}(p)\sigma^{\mu\nu}(p+k)_{\nu}u(k) = i\,\bar{u}(p)\,(p-k)^{\mu}\,u(k)$$

(d) Without using any explicit Dirac matrices representation show the Gordon identities:

$$\bar{u}(p)\gamma^{\mu}u(k) = +\frac{1}{2m}\bar{u}(p)\left[(p+k)^{\mu} + i\sigma^{\mu\nu}(p-k)_{\nu}\right]u(k)$$
$$\bar{v}(p)\gamma^{\mu}v(k) = -\frac{1}{2m}\bar{v}(p)\left[(p+k)^{\mu} + i\sigma^{\mu\nu}(p-k)_{\nu}\right]v(k)$$

(e) Consider the current $J_{\mu}(p_1, p_2) = \bar{u}(p_2)p_1\gamma_{\mu}p_2u(p_1)$. Show that J_{μ} can be written as:

$$J_{\mu} = \bar{u}(p_2) \left[F_1(q^2, m) \gamma_{\mu} + F_2(q^2, m) \sigma_{\mu\nu} q^{\nu} \right] u(p_1)$$

with $q^{\mu} = p_2^{\mu} - p_1^{\mu}$. Determine the functions $F_1(q^2, m), F_2(q^2, m)$;

(f) Consider the current $J_{\mu}(p_1, p_2) = \bar{u}(p_2)p^{\rho}q^{\nu}\sigma_{\mu\rho}\gamma_{\nu}u(p_1)$, with $p^{\mu} = p_2^{\mu} + p_1^{\mu}$ and $q^{\mu} = p_2^{\mu} - p_1^{\mu}$. Show that J_{μ} can be written as:

$$J_{\mu} = \bar{u}(p_2) \left[F_1 \gamma_{\mu} + F_2 q_{\mu} + F_3 \sigma_{\mu\nu} q^{\nu} \right] u(p_1)$$

and determine the functions F_1, F_2, F_3 ;