Remind of C/C++ basic elements

P. Ronchese
Dipartimento di Fisica e Astronomia “G.Galilei”

Universita di Padova

“Object oriented programming and C++” course

Object oriented programming and C++ C/C++ Elements - 1

Introduction
@0000

The “main” function

The execution of a C++ program starts with the ma in function]

@ all C++ programs have one and only one main function

@ it executes operations, calls other functions, creates
objects...

@ instructions are terminated by a semicolon ;

@ it returns an integer (typically O to indicate no errors)

int main () {

return O;

Programs are (usually) splitted in several files:
“translation units”

ct++ -Wall -o exec_name file 1ist J

Object oriented programming and C++ C/C++ Elements - 2

Introduction
(o] Jelele]

Data types
@ signed integers: int, short, long, long long
@ unsigned integers: unsigned int,
@ enumerators: enum (improved in C++11)
@ floating point: float, double, long double
@ characters: char
@ C-strings: char*/char[] (terminated by 7 \0")
@ logicals: bool (oralso int, 0 for false)
All variables must be “declared” before their usage
@ names are case-sensitive:
Energy is not the same as energy

@ they can be initialized: int i=3;
@ several variables can be declared in one line: int i, j;

@ they can be made unmodifiable: const float x=3.14;

@ they are (usually) visible inside the “scope” ({ }) where
they’re declared

Object oriented programming and C++ C/C++ Elements - 3

Introduction
[e]e] Tele]

Operations

“unary” operators: -x , j-——, ++1, ...
“binary” operators: a+b , x-y, i*7J, p<q, ...
“ternary” operators: x?a:b

other operators:

e () : function call
@ new, delete : create and destroy

o ...

@ sizeof (...) :variable size (in bytes)

There’s a defined precedence and associativity table:

@ e.g. in a+b*c the multiplications is executed before the
sum

@ but it can be overridden by using parentheses: (a+b) xc .

Object oriented programming and C++ C/C++ Elements - 4

Introduction
[e]e]e] o]

Flux control

@ Conditional statements:
@ if (expr) stat:
it evaluates expr, if it's true it executes stat .
@ Loop statements:
@ for (expl;exp2;exp3) stat
it evaluates exp1 ,
then it evaluates exp2 ,
if it's true it executes stat and then exp3,
then it evaluates exp2 again and so on.
@ while (expr) stat:
it evaluates expr , if it's true it executes stat ,
it evaluates expr again and so on.
@ do stat while (expr) :
it executes stat and then it evaluates expr,
if it's true it executes stat again and so on.
@ continue and break instructions to alter the cycle
@ Choice statements:
@ switch (int_expr) { list_of cases }

Object oriented programming and C++ C/C++ Elements - 5

Introduction
0000e

Comments

Comments can (must) be included in programs!)

The compiler ignores anything that:
@ follows a // until the end of the line,
@ is comprised between a /+ and a x/

int main () {
// an one-line comment
/* a comment
written over
several lines */

return O;

Object oriented programming and C++ C/C++ Elements - 6

Operators and types
[leJele]e]

Mathematical operators

Decreasing priority:

++, —— : pre/post increment and decrement
x, /, % : muliplication, division, modulus

+ , — : addition and subtraction

< , >=,==, =1 relations
=,x=,/=,%=,+=,—=:assignment

Care needed!

@ The result of the division between integers is an integer
@ Equality and assignment operators are similar but different
int i=4, j=5; int i=7, j=9, k=0;
float x=i/73; // x=0 if (i==9)k+=1; // false
float y=ix1.0/73; if(i=j)k+=2; // true
// y=0.8 // k=2

Object oriented programming and C++ C/C++ Elements - 7

Operators and types
(o] Jelele]

Logical and bitwise operators

Logical - Decreasing priority:
@ & : bitwise and
@ ~ : bitwise exclusive or
@ | : bitwise or
@ && : logical and
@ || : logical or
@ &=, "=, |=: bitwise assignment

Bitwise - Decreasing priority:
@ <<, >>: bitwise shift left/right
@ <<=, >>= bitwise shift assignment

Object oriented programming and C++ C/C++ Elements - 8

Operators and types
[e]e] le]e]

Assignment operators

Assignment operators are also expressions

@ The value of the expression is given by the left-side after
the assignment

@ Assignments can be used inside complex operations

int 1=3;

int J;

float x=5.7/(3=1);

// now both "i" and "j" are 3
// and "x" is 5.7/3=1.9

Object oriented programming and C++ C/C++ Elements - 9

Operators and types
[e]e]e] Jo]

Type conversions

Variables are converted to other types implicitly when needed,
but some control is sometime necessary (e.g. x=1x1.0/73):
“type cast”

Explicit conversions between an int i anda float x:
@ C-style casts: i=(int)x Or i=int (x)

e not always clear what they do
e difficult to find across the code

@ C++-style casts: i=static_cast<int> (x)

C++ has 3 other types of casts, they will be seen later J

Object oriented programming and C++ C/C++ Elements - 10

Operators and types
[e]e]ele]]

Type synonyms

An existing type (e.g. £1loat) can be given an additional name
with a t ypede £ declaration J

typedef float number;

number x=5.1;

number y=6.7;

number z=x+y;

std::cout << z << std::endl;

@ A set of variables can be declared with a common type that
can be changed by modifying just one line.

@ Short names can be defined for complex types
(to be seen later).

Object oriented programming and C++ C/C++ Elements - 11

Functions
9000000

User-defined functions

Blocks of code can be isolated into “functions”:
@ a function takes a list of “arguments”,
@ a function returns one value, or none (“void”),
@ a function must be declared before being used.
int f(int x,float y);
int main () {
int i=2;
float z=3.4;
int 3=£f(i,z);
return O;

A function can be “defined” after being used,
or even in another “translation unit” (i.e. another file):
only the declaration must be present before the usage

Object oriented programming and C++ C/C++ Elements - 12

Functions
(o] lelelele]e]

Recursion

C/C++ allow a function to call itself: “recursive” calls)

@ At each call all the function local variables are created and
initialized.

@ Some condition must occur for the function to return
without calling itself.

@ Example: function to compute n!

nl— 1 ifn=0
L (n=1n ifn>0

unsigned int fact (unsigned int n) {
if(n)return n*xfact (n-1);
return 1;

Object oriented programming and C++ C/C++ Elements - 13

Functions
[e]e] lelele]e]

inline functions

By declaring a function inline the compiler is instructed to
replicate the code across the program (if possible):

@ there’s no function call/return overhead,
@ larger executables are produced,

@ the function declaration is not sufficient.
inline int iabs(int 1) {
return (1i>07?i:-1);

@ Inlining is not possible for recursive functions.
@ The program size increase could vanish the benefit.
@ The compiler can ignore the indication.

Object oriented programming and C++ C/C++ Elements - 14

Functions
[e]e]e] Jelele]

Functions arguments

Function arguments are passed “by value”, i.e.
each variable is copied to a local one, inside the function scope:

@ the function can modify that copy,

@ the function cannot modify the variable in the calling
function,

@ the copy is destroyed when the function ends.
The return value is copied back to the calling function.

C++ specific: function “overloading”

A function name is “overloaded” when several functions exist
with the same name but different argument
number and/or types

Object oriented programming and C++ C/C++ Elements - 15

Functions
[e]e]ele] lele]

Default arguments

Default values can be provided:
@ they’re set in the function declaration,

@ if an argument has a default value, all the following ones
must have one.
int f(int i,int j=1,int k=2);
int main () {
int n=12;
int m=23;
int 1=f(n,m);
// equivalent to
// int 1=f(n,m,2);

Object oriented programming and C++ C/C++ Elements - 16

Functions
0000080

main function arguments

The “main” function has its arguments, too:

@ the first one is an integer, equal to the number of “words” in
the command line, i.e. the number of arguments plus one,

@ the second is an array of C-strings, corresponding to those
words.
int main(int argc,char* argv[]) {
std::cout << argv[0]
<< " called with arguments:";

int iarg;
for (iarg=1l; iarg<argc;++iarqg)
std::cout << (iarg > 1 2 ", " : " ")
<< argvl[iargl;
std::cout << std::endl;
return 0;

Object oriented programming and C++ C/C++ Elements - 17

Functions
000000

Predefined functions

Some functions are “predefined”, i.e. they’re already available)

Mathematical functions (in math.h):
sgrt (double) , pow (double, double)
sin (double) , acos (double) , ...
atan2 (double, double)
exp (double) , log (double)
fabs (double) : abs. value
lround (double) , 11lround (double) : rounding
Add a trailing “1” to use with 1ong doubles

Utility functions (in stdlib.h):
@ random() :random int
between 0 and 23" — 1 (RAND_MAX=0x7fffffff)
@ srandom (unsigned int) : set the seed for the random
generation
@ exit (int) : stop the execution immedately

Object oriented programming and C++ C/C++ Elements - 18

Pointers and references
00000000000

Pointers

The “pointer” to a variable (or an object) is its memory address:
@ it's declared by adding a “+” to the variable type,
@ it can be obtained by mean of the operator “s”,
@ it can be changed to contain the address of another
variable (of the same type),
the variable or object content can be obtained back by
mean of the operator “x” ,
@ dereferencing an invalid pointer can produce a fatal error,
@ a null pointer (=0) is always invalid.
int i=12;
int 3=23;
int* p=&i; // "p" is the address of "i"
std::cout << xp << std::endl;
*p=24; // "i" is now 24
p=&73; // "p" 1s now the address of "J"
std::cout << i << " " << %p << std::endl;

Object oriented programming and C++ C/C++ Elements - 19

Pointers and references
(o] lelelelelelelele]e)

Pointers declaration pitfalls

@ A pointer can be declared in two ways
(different “styles” but identical effects):
intx p; // "p" 1s an "intx"
int *p; // "xp" is an "int"
@ When several variables are declared in one line,
a pitfall may arise:
intx p, q;
// "p" is a pointer to int, "g" is an int
@ Each pointer must be declared with its “x”
int* p, =*qg;
// both "p" and "g" are pointers to int
int *p, *q;
// both "p" and "g" are pointers to int
int p, =*q;
// "p" is an int, "g" is a pointer to int

Object oriented programming and C++ C/C++ Elements - 20

Pointers and references
[e]e] lelelelelelele]e)

Arrays are sets of variables of the same type:

@ they’re declared by adding a “[N]” (where “N” is an integer)
to the variable name,

@ their elements are accessed by addinga “[11”
where 0<i<N-1.

int i[12];

int J;

for (3=0; 3<12;++3)i[]j]1=2*7;

for (3=0; j<12; ++7j)std::cout << J << " "

<< i[j] << std::endl;

3

@ Arrays are quite similar to pointers.

@ intx p=i; isthe pointer to the first element:
xp=1i[0] , *(p+n)=i[n] , p+n=~&i[n]
@ Strings are arrays of chars, witha " \0’ as last element.

Object oriented programming and C++ C/C++ Elements - 21

Pointers and references
[ee]e] lelelelelele]e)

References

A “reference” can be seen as a new name for an existing

variable or object:

@ it's declared by adding a & to the variable type,

@ the referred variable must be specified in the declaration,

@ contrary to pointers, it cannot be changed to refer to a
different variable.

int i=12;

int& j=i; // "3" is a reference to "i"

std::cout << J << std::endl;

j=24; // "i" is now 24

std::cout << 1 << std::endl;

@ They’re useful in passing or retrieving variables to/from
functions.

@ Actually they’re pointers, with the “x” embedded.

Object oriented programming and C++ C/C++ Elements - 22

Pointers and references
[e]e]ele] Telelelele]e)

References and pointers to const

A variable can be modified through a pointer or reference to it,
unless a “pointer/reference to const” is used.

int 1=12;

const int* p=&i; //"p" is the address of "i"
std::cout << xp << std::endl;

i=19; // allowed, "i" is not "const"
std::cout << xp << std::endl;

*p=26; // WRONG, "*p" is const

Only references to “const” and pointers to “const” can be
defined for “const” variables (of course) J

Object oriented programming and C++ C/C++ Elements - 23

Pointers and references
[e]e]elele] lelelele]e)

References, pointers and function arguments

Functions pass arguments by value, but:
@ arguments and/or result can be pointers, or references,
@ the pointers or references are copied, actually,
@ the pointed/referred variable or object can be changed,
@ arguments passed as const reference cannot be changed.

float f(int& i,const float* x) {
1%x=2; // "i" in the client
// function is modified
return *x*3.4; // "x" cannot be modified

Copy by const reference can be used to pass functions
objects that cannot be copied J

Object oriented programming and C++ C/C++ Elements - 24

Pointers and references
00000080000

References, pointers and function return

Functions result can also be a pointer or reference, but:
@ memory used for local variables is deallocated when the
function returns,
@ when accessed by the calling function, garbage is found,
@ returning pointers and/or references to local variables lead
to unpredictable results.

intx f£(int 1) {
int j=ix2; // local variable, destroyed
// when "f" returns
return &j; // unvalid pointer returned

Only pointer or reference to persistent objects
can be returned J

Object oriented programming and C++ C/C++ Elements - 25

Pointers and references
00000008000

Dynamic memory handling

Pointers are used to allocated/deallocated memory at run time
(dynamically):

@ variables are created/destroyed with the operators

“new” and “delete”,

@ dynamic variables are not bound to a scope.

int*x 1 = new int (3);

// "i" is a pointer to an int

// whose value is "3"

float* £ = new float[1l2];

// "f" is an array of 12 float

delete 1i;

// "delete" destroys one single variable
delete[] £;

// "delete[]" destroys an array

Object oriented programming and C++ C/C++ Elements - 26

Pointers and references
00000000800

Dynamic memory pitfalls

Special care is required in dynamic variables handling]

@ Dynamic variables are destroyed only by a “delete”
operation, or at execution end:
e they use unrecoverable memory when all the pointers to
them go out of scope (“memory leak”),
e they must be deleted when no more necessary.
@ When a variable has been deleted, the pointer to its
memory location is invalid but it’s still existing:
e it cannot be de-referenced (“dangling reference”),
@ asecond “delete” operation cannot be performed,
e care is required with multiple copies of a pointer.
@ Unpredictable results are obtained when “delete” is used
for arrays or “delete[]” is used for single variables.
@ Applying a delete or delete[] to a null pointer (=0) has
no effect; a fatal error is produced with any other invalid
pointer.

Object oriented programming and C++ C/C++ Elements - 27

Pointers and references
00000000080

Pointer and reference based type casts

By using pointers and references,
other type casts become possible J

Force the modification of a (non-const) variable
through a pointer to const
(unpredictable results for originally-const variables)
int 1i; // "i"™ 1is not "const"
const intx p = &i; // "*p" is "const"
const_cast<int> (p)=2;

Convert the pointer to a type to the pointer to another type,
with no checks

float x = 23.45;

float* pf = &x;

intx pi = reinterpret_cast<int*> (pf);

std::cout << xpi << std::endl;

// prints "1102813594"

Object oriented programming and C++ C/C++ Elements - 28

Pointers and references
0000000000 e

Generic pointers

A “pointer to void” can contain the address of any variable or
object:

@ it's declared as void*,

@ it cannot be de-referenced,

@ it cannot be used as argument for delete

@ tobe used a reinterpret_cast is needed.

int 1i;
void* p=&i;

std::cout << xreinterpret_cast<int*>(p)
<< std::endl;

Object oriented programming and C++ C/C++ Elements - 29

Input-output
9000000000

C++-style input-output

@ Input and output go through “streams”, cin and cout are
the standard input and output streams.

@ Input and output operators are >> and << (“bit move”) .
@ Input and output from/to files go through file streams.

#include <iostream>
#include <fstream>
int main () {
int i;
std::ifstream file ("inputfile");
file >> 1i;
std::cout << 1 << std::endl;

Object oriented programming and C++ C/C++ Elements - 30

Input-output
0e0000000

Loop input

@ Input stream operator << return value can be tested to be

e true to check for successfull reading,
@ false to check for end of file.

@ End of input from keyboard can be sent with ctr1-d.

@ To read again after and end-of-input the input stream must
be reset by the function clear () .

#include <iostream>
int main () {
int 1i;
while (std::cin >> 1i)
std::cout << 1 << std::endl;
std::cin.clear();

Object oriented programming and C++ C/C++ Elements - 31

Input-output
[e]e] leleleleele)

Output formatting commands

A lot of additional commands to format the output are available,
(e.g. to set the number of digits to write for numbers) J

#include <iostream>
int main ()
float x;

std::cout.width(12);
std::cout.precision(5);
std::cout << x << std::endl;
return 0;

Object oriented programming and C++ C/C++ Elements - 32

Input-output
[e]e]e] lelelelele)

Output formatting objects

The same commands can be sent inside the ouput streaming J

#include <iostream>
finclude <iomanip>
int main ()

float x;

std::cout << std::setw(l2)
<< std::setprecision(5)

<< x << std::endl;
return 0;

Object oriented programming and C++ C/C++ Elements - 33

Input-output
[e]e]e]e] Telelele)

C-style input-output

C++ allows the use of plain-C I/O functions (in stdio.h):

@ scanfand printf for input and output to/from
standard; the first argument is a string setting the format

@ fscanf and fprintf for input and output to/from file
@ sscanf and sprintf for input and output to/from strings

#include <stdio.h>

int main () {
int i;
scanf ("%d",&i); // pointer to "i" required
printf ("$d\n",i); // "\n" for new line
return 0;

Object oriented programming and C++ C/C++ Elements - 34

Input-output
[e]e]e]ele] lelele)

C-style formatting

Data type is to be specified

$N.Md decimal int $N.Pf plain float
$N.Mo octal int $N.Pe exponential float
$N.Mx hexadecimal int $N.Ls char string

N output width M number of digits

P precision IL string max. length
%1d long sgd long long

$1f double negative N : left-justify
printf ("=%9.6d=\n", 123); writes = 000123=
printf ("=%$9.3f=\n",1.23); writes = 1.230=

Object oriented programming and C++ C/C++ Elements - 35

Input-output
000000800

I/0 with strings

@ Read input from strings
@ Write output to strings

#include <iostream>
#include <sstream>
int main () {

#include <stdio.h>
int main () {)]
int 1;
std::stringstream s;
s.clear();
s.str("12");

s >> i;

int i;
char s[1007];
sprintf (s, "%d\n", 1) ;

return O;

return 0;

Object oriented programming and C++ C/C++ Elements - 36

Input-output
000000080

Input by line

Text input can be read “line by line”

A line of input is read by mean of the function “get1ine”,
taking as arguments an array of chars and the max length
(plus eventually the line-terminate character, by default * \n")

#include <iostream>

int main () {
int maxLength=1000;
charx line=new char[maxLength];
while (std::cin.getline (line, maxLength))
std::cout << line << std::endl;

return 0;

Object oriented programming and C++ C/C++ Elements - 37

Input-output
00000000e

Binary input-output

Binary files contain the variables
exactly as they’re stored in memory.

Binary I/O is performed with the functions “read” and “write”,
taking pointers to char (and number of bytes) as arguments J

#include <iostream>
#include <fstream>
int main () {
int i;
std::ifstream file("inputfile",
std::ios_base::binary);
file.read(reinterpret_cast<charx>(&i),
sizeof (1));
std::cout << i1 << std::endl;
return 0;

}

Object oriented programming and C++ C/C++ Elements - 38

	Introduction
	Operators and types
	Functions
	Pointers and references
	Input-output

