
Introduction Usage

The C/C++ preprocessor

P. Ronchese
Dipartimento di Fisica e Astronomia “G.Galilei”

Università di Padova

“Object oriented programming and C++” course

Object oriented programming and C++ C/C++ preprocessor - 1



Introduction Usage

Process before compilation

Lines starting with "#" (no ";" at the end) contain commands
executed before the actual compilation begin: “preprocess”

Commands useful to:
avoid code duplication,
add flexibility to compile in different environments,
ease debugging.

Powerful, but sometimes tricky

The code actually seen by the compiler after preprocessing
can be seen by issuing the command:
c++ -E -o file.pp file.cc

Object oriented programming and C++ C/C++ preprocessor - 2



Introduction Usage

Preprocessor commands

#include "file" , #include <file> :
the specified file is simply included

files are looked for in several places
different places sequences in the search with the two forms
"" and <>
adding the option -I path the specified path is added to
the sequence of places to search

#define X Y : replaces X with Y (“macro”)
#undef X : removes the X definition
#ifdef X , #ifndef X : process/compile the following
(until #endif) only if X is defined or not
#if X==Y , #elif X==Z , #else : process/compile
the following (until #endif) only if X is defined equal to Z
(with Z a constant integer)
#error "message" : write the message and terminate
the compilation

Object oriented programming and C++ C/C++ preprocessor - 3



Introduction Usage

Conditional inclusion

Functions (and not only fuctions) must be declared before
being used:

their declarations are preferably put into dedicated files
(“header file”) included by files using them,
some declarations can be present only once,
but with several nested #include it could happen that an
header file is included more than once

#ifndef f_h // include guard
#define f_h
int f(int i);
#endif
int f(int i) {
return 2*i;

}

Use #ifndef to ensure single compilation

Object oriented programming and C++ C/C++ preprocessor - 4



Introduction Usage

Preprocessor macros

The C/C++ preprocessor allows the definition of “macros” with
arguments, that can be used to mimic functions

(with important differences)
#define SQUARE(X) X*X
#define PRINT(X) std::cout << #X << " = "

<< X << std::endl
...
int i=12;
int j=SQUARE(i);
PRINT(j);
...
The argument is simply replaced, e.g.
SQUARE(i) is replaced by i*i
The argument following a # is replaced by a string, e.g.
PRINT(j) is replaced by
std::cout << "j" << " = " << j << std::endl

Object oriented programming and C++ C/C++ preprocessor - 5



Introduction Usage

Macro pitfalls

The code replacement produce a lot of pitfalls!

The operation priority can be broken:
SQUARE(x+y) becomes x+y*x+y , i.e. x+(y*x)+y ,
quite different from (x+y)*(x+y) (expected).

Composition of several operations with brackets {...} in
a macro can break flux control:

if(...) COMPOSITE(i); else COMPOSITE(j);
becomes
if(...) {...}; else {...}; ,
the first semicolon breaks the
if(...) {...} else {...} syntax

Workarounds do exist, but they make the code obscure
and tricky

Use macros at your own risk, or, better,
do not use them at all unless you’re more than experienced.

Object oriented programming and C++ C/C++ preprocessor - 6



Introduction Usage

Predefined macros

Some macros are predefined:
__FILE__ : file name
__LINE__ : line number
__DATE__ : compilation date
__TIME__ : compilation time
__cplusplus__ : non-zero for C++ compiler

Macros can be defined in the compilation command:
c++ -D X=Y has the same effect as #define X Y ,
useful to have different versions in the same file

Object oriented programming and C++ C/C++ preprocessor - 7


	Introduction
	Usage

