
Introduction Operators and types Functions Pointers and references Input-output

Remind of C/C++ basic elements

P. Ronchese
Dipartimento di Fisica e Astronomia “G.Galilei”

Università di Padova

“Object oriented programming and C++” course

Object oriented programming and C++ C/C++ Elements - 1

Introduction Operators and types Functions Pointers and references Input-output

The “main” function

The execution of a C++ program
(usually) starts with the main function

All C++ programs have one and only one main function
It executes operations, calls other functions, creates
objects...
Instructions are terminated by a semicolon ;

It returns an integer (typically 0 to indicate no errors)
...
int main() {
...
return 0;

}
Programs are (usually) splitted in several files:

“translation units”
c++ -Wall -o exec_name file_list

Object oriented programming and C++ C/C++ Elements - 2

Introduction Operators and types Functions Pointers and references Input-output

Data types

signed integers: int, short, long, long long
unsigned integers: unsigned int, ...
enumerators: enum (improved in C++11: enum class)
floating point: float, double, long double
characters: char
C-strings: char*/char[] (terminated by ’\0’)
logicals: bool (or also int, 0 for false)

All variables must be “declared” before their usage
names are case-sensitive:
Energy is not the same as energy
they can be initialized: int i=3;

several variables can be declared in one line: int i,j;

they can be made unmodifiable: const float x=3.14;

they are (usually) visible inside the “scope” ({}) where
they’re declared

Object oriented programming and C++ C/C++ Elements - 3

Introduction Operators and types Functions Pointers and references Input-output

Automatic type determination

C++11 only
In declarations with initialization the type could be
desumed by the right member.
A variable can be “declared” having the same type of
another one.

int f(double x) {
return 2*lround(x);

}
int main() {
auto i=f(3.7);
decltype(i) j;
j=i*i;
std::cout << i << " " << j << std::endl;
return 0;

}

Object oriented programming and C++ C/C++ Elements - 4

Introduction Operators and types Functions Pointers and references Input-output

Compile-time constants

C++11 only
An unmodifiable object known at compile time

can be declared constexpr.

constexpr int f(int i, int j) {
return i*j;

}
int main() {
constexpr int i=3;
int j;
std::cin >> j;
std::cout << i*j << std::endl;
constexpr int k=f(i,5);
std::cout << k << std::endl;
return 0;

}

Object oriented programming and C++ C/C++ Elements - 5

Introduction Operators and types Functions Pointers and references Input-output

Operations

“unary” operators: -x , j-- , ++l , ...
“binary” operators: a+b , x-y , i*j , p<q , ...
“ternary” operators: x?a:b
other operators:

() : function call
new , delete : create and destroy
...
sizeof(...) : variable size (in bytes)

There’s a defined precedence and associativity table:
e.g. in a+b*c the multiplications is executed before the
sum
but it can be overridden by using parentheses: (a+b)*c .

The expressions evaluation order is NOT defined:
k=(i+3)*(++i); is undefined

Object oriented programming and C++ C/C++ Elements - 6

Introduction Operators and types Functions Pointers and references Input-output

Flux control

Conditional statements:
if (expr) stat :
it evaluates expr , if it’s true it executes stat .

Loop statements:
for (exp1;exp2;exp3) stat :
it evaluates exp1 ,
then it evaluates exp2 ,
if it’s true it executes stat and then exp3 ,
then it evaluates exp2 again and so on.
while (expr) stat :
it evaluates expr , if it’s true it executes stat ,
it evaluates expr again and so on.
do stat while (expr) :
it executes stat and then it evaluates expr ,
if it’s true it executes stat again and so on.
continue and break instructions to alter the cycle

Choice statements:
switch (int_expr) { list_of_cases }

Object oriented programming and C++ C/C++ Elements - 7

Introduction Operators and types Functions Pointers and references Input-output

Comments

Comments can (must) be included in programs!

The compiler ignores anything that:
follows a // until the end of the line,
is comprised between a /* and a */

...
int main() {
... // an one-line comment
/* a comment

written over
several lines */

...
return 0;

}

Object oriented programming and C++ C/C++ Elements - 8

Introduction Operators and types Functions Pointers and references Input-output

Mathematical operators

Decreasing priority:
++ , -- : pre/post increment and decrement

* , / , % : muliplication, division, modulus
+ , - : addition and subtraction
< , > , <= , >= , == , != : relations
= , *= , /= , %= , += , -= : assignment

Care needed!
The result of the division between integers is an integer
Equality and assignment operators are similar but different

int i=4, j=5;
float x=i/j; // x=0
float y=i*1.0/j;

// y=0.8

int i=7, j=9, k=0;
if(i==j)k+=1; // false
if(i=j)k+=2; // true

// k=2

Object oriented programming and C++ C/C++ Elements - 9

Introduction Operators and types Functions Pointers and references Input-output

Logical and bitwise operators

Logical - Decreasing priority:
& : bitwise and
ˆ : bitwise exclusive or
| : bitwise or
&& : logical and
|| : logical or
&= , ˆ= , |= : bitwise assignment

Bitwise - Decreasing priority:
<< , >> : bitwise shift left/right
<<= , >>= : bitwise shift assignment

Expressions evaluation ends when the result is known:
in if(((i*i)<0)&&((j+=2)<10))...;

j is NOT incremented.

Object oriented programming and C++ C/C++ Elements - 10

Introduction Operators and types Functions Pointers and references Input-output

Assignment operators

Assignment operators are also expressions

The value of the expression is given by the left-side after
the assignment
Assignments can be used inside complex operations

int i=3;
int j;
float x=5.7/(j=i);
// now both "i" and "j" are 3
// and "x" is 5.7/3=1.9

Object oriented programming and C++ C/C++ Elements - 11

Introduction Operators and types Functions Pointers and references Input-output

Type conversions

Variables are converted to other types implicitly when needed,
but some control is sometime necessary (e.g. x=i*1.0/j):

“type cast”

Explicit conversions between an int i and a float x :
C-style casts: i=(int)x or i=int(x)

not always clear what they do
difficult to find across the code

C++-style casts: i=static_cast<int>(x)

C++ has 3 other types of casts, they will be seen later

Object oriented programming and C++ C/C++ Elements - 12

Introduction Operators and types Functions Pointers and references Input-output

Type synonyms

An existing type (e.g. float) can be given an additional name
with a typedef declaration

typedef float number;
number x=5.1;
number y=6.7;
number z=x+y;
std::cout << z << std::endl;

A set of variables can be declared with a common type that
can be changed by modifying just one line.
Short names can be defined for complex types
(to be seen later).

Object oriented programming and C++ C/C++ Elements - 13

Introduction Operators and types Functions Pointers and references Input-output

User-defined functions

Blocks of code can be isolated into “functions”:
a function takes a list of “arguments”,
a function returns one value, or none (“void”),
a function must be “declared” before being used.

int f(int x,float y);
int main() {
int i=2;
float z=3.4;
int j=f(i,z);
return 0;

}

A function can be “defined” after being used,
or even in another “translation unit” (i.e. another file):

only the declaration must be present before the usage

Object oriented programming and C++ C/C++ Elements - 14

Introduction Operators and types Functions Pointers and references Input-output

Executable build

“compilation”: each source file is compiled to machine
instructions
“linking”: the instructions in all files are linked together and
any instruction to interact with the operating system is
added

both steps can be executed in one go:
c++ -o exe file1.cc file2.cc
only the first step can be executed, skipping the second one:
c++ -c file1.cc file2.cc
the files created in the first step can be given as input to the
second step: c++ -o exe file1.o file2.o

A function can be declared many times, and must be
defined exactly once.
Otherwise an “undefined reference” or “multiple definition”
error arises.

This check is performed at linking time.

Object oriented programming and C++ C/C++ Elements - 15

Introduction Operators and types Functions Pointers and references Input-output

Recursion

C/C++ allow a function to call itself: “recursive” calls

At each call all the function local variables are created and
initialized.
Some condition must occur for the function to return
without calling itself.
Example: function to compute n!

n! =
{

1 if n = 0
(n − 1)!n if n > 0

unsigned int fact(unsigned int n) {
if(n)return n*fact(n-1);
return 1;

}

Object oriented programming and C++ C/C++ Elements - 16

Introduction Operators and types Functions Pointers and references Input-output

inline functions

By declaring a function inline the compiler is instructed to
replicate the code across the program (if possible):

there’s no function call/return overhead,
larger executables are produced,
the function declaration is not sufficient.

inline int iabs(int i) {
return (i>0?i:-i);

}

Inlining is not possible for recursive functions.
The program size increase could vanish the benefit.
The compiler can ignore the indication.

Object oriented programming and C++ C/C++ Elements - 17

Introduction Operators and types Functions Pointers and references Input-output

Functions arguments

Function arguments are passed “by value”, i.e.
each variable is copied to a local one, inside the function scope:

the function can modify that copy,
the function cannot modify the variable in the calling
function,
the copy is destroyed when the function ends.

The return value is copied back to the calling function.

C++ specific: function “overloading”

A function name is “overloaded” when several functions exist
with the same name but different argument

number and/or types

Object oriented programming and C++ C/C++ Elements - 18

Introduction Operators and types Functions Pointers and references Input-output

Default arguments

Default values can be provided:
they’re set in the function declaration,
if an argument has a default value, all the following ones
must have one.

int f(int i,int j=1,int k=2);
int main() {
int n=12;
int m=23;
int l=f(n,m);
// equivalent to
// int l=f(n,m,2);

}

Object oriented programming and C++ C/C++ Elements - 19

Introduction Operators and types Functions Pointers and references Input-output

main function arguments

The “main” function has its arguments, too:
the first one is an integer, equal to the number of “words” in
the command line, i.e. the number of arguments plus one,
the second is an array of C-strings, corresponding to those
words.

int main(int argc,char* argv[]) {
std::cout << argv[0]

<< " called with arguments:";
int iarg;
for(iarg=1;iarg<argc;++iarg)

std::cout << (iarg > 1 ? ", " : " ")
<< argv[iarg];

std::cout << std::endl;
return 0;

}

Object oriented programming and C++ C/C++ Elements - 20

Introduction Operators and types Functions Pointers and references Input-output

Predefined functions

Some functions are “predefined”, i.e. they’re already available

Mathematical functions (in math.h):
sqrt(double) , pow(double,double)
sin(double) , acos(double) , ...
atan2(double,double)
exp(double) , log(double)
fabs(double) : abs. value
lround(double) , llround(double) : rounding

Add a trailing “l” to use with long doubles

Utility functions (in stdlib.h):
random() : random int
between 0 and 231 − 1 (RAND_MAX≡0x7fffffff)
srandom(unsigned int) : set the seed for the random
generation
exit(int) : stop the execution immediately

Object oriented programming and C++ C/C++ Elements - 21

Introduction Operators and types Functions Pointers and references Input-output

Pointers

The “pointer” to a variable (or an object) is its memory address:
it’s declared by adding a “*” to the variable type,
it can be obtained by mean of the operator “&” ,
it can be changed to contain the address of another
variable (of the same type),
the variable or object content can be obtained back by
mean of the operator “*” ,
dereferencing an invalid pointer can produce a fatal error,
a null pointer (=0) is always invalid (nullptr in C++11).

int i=12;
int j=23;
int* p=&i; // "p" is the address of "i"
std::cout << *p << std::endl;

*p=24; // "i" is now 24
p=&j; // "p" is now the address of "j"
std::cout << i << " " << *p << std::endl;

Object oriented programming and C++ C/C++ Elements - 22

Introduction Operators and types Functions Pointers and references Input-output

Pointers declaration pitfalls

A pointer can be declared in two ways
(different “styles” but identical effects):
int* p; // "p" is an "int*"
int *p; // "*p" is an "int"

When several variables are declared in one line,
a pitfall may arise:
int* p, q;
// "p" is a pointer to int, "q" is an int

Each pointer must be declared with its “*”
int* p, *q;
// both "p" and "q" are pointers to int
int *p, *q;
// both "p" and "q" are pointers to int
int p, *q;
// "p" is an int, "q" is a pointer to int

Object oriented programming and C++ C/C++ Elements - 23

Introduction Operators and types Functions Pointers and references Input-output

Arrays

Arrays are sets of variables of the same type:
they’re declared by adding a “[N]” (where “N” is an integer)
to the variable name, eventually initialized with a list,
their elements are stored in contiguous memory locations
and accessed by adding a “[i]” , where 0 ≤ i ≤ N-1 .

int i[12];
int k[12]={7,6,5,4,3,2,1,0,11,10,9,8};
int j;
for(j=0;j<12;++j)i[j]=2*j;
for(j=0;j<12;++j)std::cout << j << " "

<< i[j] << " " << k[j] << std::endl;

Arrays are quite similar to pointers.
int* p=i; is the pointer to the first element:
*p ≡ i[0] , *(p+n) ≡ i[n] , p+n ≡ &i[n]

Strings are arrays of chars, with a ’\0’ as last element.
Object oriented programming and C++ C/C++ Elements - 24

Introduction Operators and types Functions Pointers and references Input-output

Range for

C++11 only
A loop can be executed over array elements

int i[12];
int k=0;
for (int& j: i) j=2*k++;
for (int j: i) std::cout << j << " ";
std::cout << std::endl;

Object oriented programming and C++ C/C++ Elements - 25

Introduction Operators and types Functions Pointers and references Input-output

Initializer lists

Prevention of “narrowing”

Initializer lists can be used also for “simple” variables.

int i={23};
int j={43.1}; // ERROR:

// conversion of float to int
// ("narrowing")

C++11 only
The “=” can be removed

(uniform with other initializers)

int i{23};
int j[3]{14,25,37};

Object oriented programming and C++ C/C++ Elements - 26

Introduction Operators and types Functions Pointers and references Input-output

References

A “reference” can be seen as a new name for an existing
variable or object:

it’s declared by adding a & to the variable type,
the referred variable must be specified in the declaration,
contrary to pointers, it cannot be changed to refer to a
different variable, and it cannot be null.

int i=12;
int& j=i; // "j" is a reference to "i"
std::cout << j << std::endl;
j=24; // "i" is now 24
std::cout << i << std::endl;

They’re useful in passing or retrieving variables to/from
functions.
Actually they’re pointers, with the “*” embedded.

Object oriented programming and C++ C/C++ Elements - 27

Introduction Operators and types Functions Pointers and references Input-output

References and pointers to const

A variable can be modified through a pointer or reference to it,
unless a “pointer/reference to const” is used.

int i=12;
const int* p=&i; // "p" is the address of "i"
std::cout << *p << std::endl;
i=19; // allowed, "i" is not "const"
std::cout << *p << std::endl;

*p=26; // ERROR, "*p" is const

Only references to “const” and pointers to “const” can be
defined for “const” variables (of course)

const int j=34;
int* q=&j; // ERROR, "j" is const
const int* r=&j; // allowed, "*r" is const

Object oriented programming and C++ C/C++ Elements - 28

Introduction Operators and types Functions Pointers and references Input-output

const pointers

A pointer can be const itself, i.e. it cannot be changed to point
to a different memory address

int i=12;
int * const p=&i; // "p" is a const pointer
int j=19;
p=&j; // ERROR, "p" is const

A pointer can be const itself and prevent the change of the
content of the memory address it points to

int i=12;
const int * const p=&i;

*p=26; // ERROR, "*p" is const
int j=19;
p=&j; // ERROR, "p" is const

Object oriented programming and C++ C/C++ Elements - 29

Introduction Operators and types Functions Pointers and references Input-output

Pointer analogy

A pointer can be seen as a paper where
the number of the page of a book is written

If a random number is written on that paper, that does not
mean that the corresponding page of the book does really
exist.
Changing the number of the page written on that paper is
quite different from changing what’s written on the page of
the book.
A const pointer is a paper where the written number of
the page cannot be changed.
A pointer to const is a paper where the number of the
page of a book is written, and the content of the book page
cannot be changed.
A const pointer to const is a paper where the number of
the page of a book is written, and both the number of the
page and the content of that page cannot be changed.

int i=12;
int const * p=&i; // "p" is a const pointer
int j=19;
p=&j; // ERROR, "p" is const

A pointer can be const itself and prevent the change of the
content of the memory address it points to

int i=12;
const int const * p=&i;

*p=26; // ERROR, "*p" is const
int j=19;
p=&j; // ERROR, "p" is const

Object oriented programming and C++ C/C++ Elements - 30

Introduction Operators and types Functions Pointers and references Input-output

References, pointers and function arguments

Functions pass arguments by value, but:
arguments and/or result can be pointers, or references,
the pointers or references are copied, actually,
the pointed/referred variable or object can be changed,
arguments passed as const reference cannot be
changed.

float f(int& i,const float* x) {
i*=2; // "i" in the client

// function is modified
return *x*3.4; // "x" cannot be modified

}

Copy by const reference can be used to pass functions
objects that cannot be copied

Object oriented programming and C++ C/C++ Elements - 31

Introduction Operators and types Functions Pointers and references Input-output

References, pointers and function return

Functions result can also be a pointer or reference, but:
memory used for local variables is deallocated when the
function returns,
when accessed by the calling function, garbage is found,
returning pointers and/or references to local variables lead
to unpredictable results.

int* f(int i) {
int j=i*2; // local variable, destroyed

// when "f" returns
return &j; // unvalid pointer returned

}

Only pointer or reference to persistent objects
can be returned

Object oriented programming and C++ C/C++ Elements - 32

Introduction Operators and types Functions Pointers and references Input-output

Dynamic memory handling

Pointers are used to allocate/deallocate memory at run time
(dynamically):

variables are created/destroyed with the operators
“new” and “delete”,
dynamic variables are not bound to a scope.

int* i = new int(3);
// "i" is a pointer to an int
// whose value is "3"
float* f = new float[12];
// "f" is an array of 12 float
...
delete i;
// "delete" destroys one single variable
delete[] f;
// "delete[]" destroys an array

Object oriented programming and C++ C/C++ Elements - 33

Introduction Operators and types Functions Pointers and references Input-output

Dynamic memory pitfalls

Special care is required in dynamic variables handling

Dynamic variables are destroyed only by a “delete”
operation, or at execution end:

they use unrecoverable memory when all the pointers to
them go out of scope (“memory leak”),
they must be deleted when no more necessary.

When a variable has been deleted, the pointer to its
memory location is invalid but it’s still existing:

it cannot be de-referenced (“dangling reference”),
a second “delete” operation cannot be performed,
care is required with multiple copies of a pointer.

Unpredictable results are obtained when “delete” is used
for arrays or “delete[]” is used for single variables.
Applying a delete or delete[] to a null pointer (=0) has
no effect; a fatal error is produced with any other invalid
pointer.

Object oriented programming and C++ C/C++ Elements - 34

Introduction Operators and types Functions Pointers and references Input-output

Pointer and reference based type casts

By using pointers and references,
other type casts become possible

Force the modification of a (non-const) variable
through a pointer to const

(unpredictable results for originally-const variables)
int i; // "i" is not "const"
const int* p = &i; // "*p" is "const"

const_cast<int>(p)=2;

Convert the pointer to a type to the pointer to another type,
with no checks

float x = 23.45;
float* pf = &x;
int* pi = reinterpret_cast<int*>(pf);
std::cout << *pi << std::endl;
// prints "1102813594"

Object oriented programming and C++ C/C++ Elements - 35

Introduction Operators and types Functions Pointers and references Input-output

Generic pointers

A “pointer to void” can contain the address of any variable or
object:

it’s declared as void* ,
it cannot be de-referenced,
it cannot be used as argument for delete ,
to be de-referenced a static_cast is needed.

int i;
void* p=&i;
...
std::cout << *static_cast<int*>(p)

<< std::endl;

Object oriented programming and C++ C/C++ Elements - 36

Introduction Operators and types Functions Pointers and references Input-output

Pointers to function

The address of a function can be taken as well
The declaration is a bit awkward:
float (*fp)(int)=func;

A typedef can be useful:
typedef float (*func_ptr)(int);
func_ptr fp;

A pointer to function cannot be saved as void*

Decreasing priority:
++ , -- : pre/post increment and decrement

* , / , % : muliplication, division, modulus
+ , - : addition and subtraction
< , > , <= , >= , == , != : relations
= , *= , /= , %= , += , -= : assignment

int s(int i) {return i*i;}
int main() {
...
int (*f)(int)=s;
int j=f(10);
...
return 0;

}
Object oriented programming and C++ C/C++ Elements - 37

Introduction Operators and types Functions Pointers and references Input-output

Pointers to function

C++11 only
Lambda function:

function coded where it’s actually needed

int main() {
...
int (*f)(int)=[](int i){return i*i;};
int j=f(10);
...
return 0;

}

int i=7, j=9, k=0;
if(i==j)k+=1; // false
if(i=j)k+=2; // true

// k=2

Object oriented programming and C++ C/C++ Elements - 38

Introduction Operators and types Functions Pointers and references Input-output

C++-style input-output

Input and output go through “streams”, cin and cout are
the standard input and output streams.
Input and output operators are >> and << (“bit move”) .
Input and output from/to files go through file streams.

#include <iostream>
#include <fstream>
int main() {
int i;
std::ifstream file("inputfile");
file >> i;
std::cout << i << std::endl;
...

}

Object oriented programming and C++ C/C++ Elements - 39

Introduction Operators and types Functions Pointers and references Input-output

Loop input

Input stream operator >> return value can be tested to be
true to check for successfull reading,
false to check for end of file.

End of input from keyboard can be sent with ctrl-d .
To read again after an end-of-input the input stream must
be reset by the function clear() .

#include <iostream>
int main() {
int i;
while(std::cin >> i)
std::cout << "---> " << i << std::endl;

std::cin.clear();
...

}

Object oriented programming and C++ C/C++ Elements - 40

Introduction Operators and types Functions Pointers and references Input-output

Output formatting commands

A lot of additional commands to format the output are available,
(e.g. to set the number of digits to write for numbers)

#include <iostream>
int main() {
float x;
...
std::cout.width(12);
std::cout.precision(5);
std::cout << x << std::endl;
return 0;

}

Object oriented programming and C++ C/C++ Elements - 41

Introduction Operators and types Functions Pointers and references Input-output

Output formatting objects

The same commands can be sent inside the ouput streaming

#include <iostream>
#include <iomanip>
int main() {
float x;
...
std::cout << std::setw(12)

<< std::setprecision(5)
<< x << std::endl;

return 0;
}

Object oriented programming and C++ C/C++ Elements - 42

Introduction Operators and types Functions Pointers and references Input-output

C-style input-output

C++ allows the use of plain-C I/O functions (in stdio.h):
scanf and printf for input and output to/from

standard; the first argument is a string setting the format
fscanf and fprintf for input and output to/from file
sscanf and sprintf for input and output to/from strings

#include <stdio.h>
int main() {
int i;
scanf("%d",&i); // pointer to "i" required
printf("%d\n",i); // "\n" for new line
return 0;

}

Object oriented programming and C++ C/C++ Elements - 43

Introduction Operators and types Functions Pointers and references Input-output

C-style formatting

Data type is to be specified

%N.Md decimal int %N.Pf plain float
%N.Mo octal int %N.Pe exponential float
%N.Mx hexadecimal int %N.Ls char string

N output width M number of digits
P precision L string max. length

%ld long %qd long long
%lf double negative N : left-justify

printf("=%9.6d=\n", 123); writes = 000123=
printf("=%9.3f=\n",1.23); writes = 1.230=

Object oriented programming and C++ C/C++ Elements - 44

Introduction Operators and types Functions Pointers and references Input-output

Buffered I/O

std::endl actually does something more
than simply write an end-of-line character (’\n’)

C++ implements buffered I/O:
any writing operation simply stores the output into a
memory buffer (i.e. a temporary storage area)
when the buffer is full, or when other conditions occur, the
buffer content is actually written to the file and then cleared
std::endl writes an end-of-line and forces the writing of
the buffer to the file
writing a simple ’\n’ writes an end-of-line but does not
perform any explicit operation on the buffer
std::flush does not write anything to the output, but
forces the writing and clearing of the buffer
... << std::endl has the same effect as
... << ’\n’ << std::flush

Object oriented programming and C++ C/C++ Elements - 45

Introduction Operators and types Functions Pointers and references Input-output

I/O with strings

Read input from strings
Write output to strings

// write to a string
#include <stdio.h>
int main() {

int i;
char s[100];
sprintf(s,"%d\n",i);
...
return 0;

}

// read from a string
#include <iostream>
#include <sstream>
int main() {

int i;
std::stringstream s;
s.clear();
s.str("12");
s >> i;
...
return 0;

}

Object oriented programming and C++ C/C++ Elements - 46

Introduction Operators and types Functions Pointers and references Input-output

Input by line

Text input can be read “line by line”

A line of input is read by mean of the function “getline” ,
taking as arguments an array of chars and the max length

(plus eventually the line-terminate character, by default ’\n’)

#include <iostream>
int main() {
int maxLength=1000;
char* line=new char[maxLength];
while(std::cin.getline(line,maxLength))

std::cout << line << std::endl;
return 0;

}

Object oriented programming and C++ C/C++ Elements - 47

Introduction Operators and types Functions Pointers and references Input-output

Binary input-output

Binary files contain the variables
exactly as they’re stored in memory.

Binary I/O is performed with the functions “read” and “write” ,
taking pointers to char (and number of bytes) as arguments

#include <iostream>
#include <fstream>
int main() {
int i;
std::ifstream file("inputfile",

std::ios::binary);
file.read(reinterpret_cast<char*>(&i),

sizeof(i));
std::cout << i << std::endl;
return 0;

}

Object oriented programming and C++ C/C++ Elements - 48

	Introduction
	

	Operators and types
	

	Functions
	

	Pointers and references
	

	Input-output
	

