
Introduction Architecture

An analysis object factory

P. Ronchese
Dipartimento di Fisica e Astronomia “G.Galilei”

Università di Padova

“Object oriented programming and C++” course

Object oriented programming and C++ Analysis factory - 1



Introduction Architecture

The “analysis factory”

The creation of EventDump and ElementReco objects is
delegated to a class AnalysisFactory object.

All analyzers derive from the common
AnalysisSteering interface.
The concrete analyzers must be known by the objects
creating them.

AnalysisSteering

EventDump ElementReco

Object oriented programming and C++ Analysis factory - 2



Introduction Architecture

Requirements

We want avoid an explicit dependence of
AnalysisFactory on the concrete analyzers.
We want avoid the need of modifying AnalysisFactory
when new analyzers are available.

In this way the flexibility of the system is significantly improved.

Object oriented programming and C++ Analysis factory - 3



Introduction Architecture

Analysis builder

We create an AbsFactory interface, with a virtual function
create returning a pointer to AnalysisSteering.

A concrete factory, e.g. EventDumpFactory:
is a class deriving from AbsFactory ,
implements create to return a concrete analyzer, e.g.
EventDump .

In an analogous way:
ElementRecoFactory creates an ElementReco ,
other concrete factories create other possible objects
inheriting from AnalysisSteering.

AnalysisFactory holds a list of pointers to
AbsFactory.

Object oriented programming and C++ Analysis factory - 4



Introduction Architecture

AbsFactory list fill

AbsFactory

EventDumpFactory ElementRecoFactory

How do we create the AbsFactory objects and fill the list of
their pointers in AnalysisFactory ?

In AnalysisFactory we provide a static function
taking a pointer to AbsFactory as parameter, and saving
it in the list.
In the constructor of AbsFactory that function is called
giving this as parameter.
We create static concrete factories, so that:

they’re created at the execution start,
when they’re created, the AbsFactory constructor is run,
they’re automatically registered in the list.
Object oriented programming and C++ Analysis factory - 5



Introduction Architecture

AbsFactory names

We want to decide at runtime which analyzers are to be created
and run.

In AnalysisFactory we store pointers to AbsFactory
into a std::map , using std::strings as key.
Each AbsFactory is identified by its name.
The function create in AnalysisFactory selects only
AbsFactory whose name is given in the command line,
and runs their create function.

Object oriented programming and C++ Analysis factory - 6


	Introduction
	

	Architecture
	
	


