
Simple version Enhanced version

A likelihood discriminator: discussion

P. Ronchese
Dipartimento di Fisica e Astronomia “G.Galilei”

Università di Padova

“Object oriented programming and C++” course

Object oriented programming and C++ A likelihood discriminator - 1



Simple version Enhanced version

The simple solution

The solution shown as “Likelihood discriminator - version 1”
works fine, but some weakness may be found in it:

the produced class (i.e. EventDiscriminator)
is tightly connected to the specific problem it addresses,
it cannot be used in other environments, despite the basic
solution is very general (classify events on probability
base),
a lot of modifications are needed to implement an
analogous procedure to classify objects with different
nature.

Object oriented programming and C++ A likelihood discriminator - 2



Simple version Enhanced version

Specific points

Should be necessary to produce a similar class
a lot of changes are to be done

In EventDiscriminator.h :
the object containing data (Event)
in fill and get functions,
the list of variables,
the list of histograms.

In EventDiscriminator.cc :
the sequence of histograms creation in book,
the sequence of histograms filling in fill,
the sequence of histograms normalization and
saving to file in save,
the sequence of histograms reading from file in read,
the sequence of probability calculations in get,
the variables calculation.

Many of them do actually count twice (signal+background).
On the other side, some parts would be identical.

Object oriented programming and C++ A likelihood discriminator - 3



Simple version Enhanced version

Common and specific operations

A lot of operations are actually
common to any likelihood discriminator

The following operations are to be done independently on the
actual variable/histogram list:

histograms creation,
histograms filling,
histograms normalization and saving to file,
histograms reading from file,
probability calculations.

Only a rather small part of the operations is actually
specific to the actual problem

the definition of the variables list,
their calculation from the object containing data.

Object oriented programming and C++ A likelihood discriminator - 4



Simple version Enhanced version

Generic and specific tasks separation

Inheritance may help in keeping distinct
common and specific operations

The base class contains the common operations and:
a “generic” list of variables and histograms,
some functionality to accept actual variables
for a specific problem.

The derived class contains the specific operations and:
instructions to pass the specific variables to the base
class,
functions to call the base class functions according to the
specific needs.

Object oriented programming and C++ A likelihood discriminator - 5



Simple version Enhanced version

Train and test tasks separation

The likelihood discriminator calculation is actually
split in two parts

“Training”:
already classified events are read,
histograms are created,
histograms are filled,
histograms are normalized and written to file.

“Testing”:
histograms are read from file,
unknown events are read,
probabilities and discriminator are computed.

The “histogram writing” and “histogram reading” parts can be
splitted from the “core” part handling the list of variables,

both for the generic and specific classes.

Object oriented programming and C++ A likelihood discriminator - 6



Simple version Enhanced version

Object relations

The whole system can be splitted in 6 classes

DiscriminatorBase

DiscriminatorRead

EventDiscriminator

DiscriminatorFill

EventDiscriminatorFill EventDiscriminatorRead

The structure is a bit complicated, but it can be very flexible

Object oriented programming and C++ A likelihood discriminator - 7



Simple version Enhanced version

Generic variables and histograms list

For each quantity several objects are needed, and
the base class (i.e. DiscriminatorBase) should define

a struct VarDesc to contain all of them:
a variable to contain its value,
an histogram with its distribution for signal,
an histogram with its distribution for background,
a flag to decide about using it or not.

They should be conveniently labelled with a name, useful to
create and store the histograms and to

choose at runtime which quantities to use.

A std::map<std::string,VarDesc*> is the best-suited
object to contain the information about the actual quantities

used for the specific problem

Object oriented programming and C++ A likelihood discriminator - 8



Simple version Enhanced version

Variable handling

A function to “register” actual variables in the list is necessary

class DiscriminatorBase {
...
struct VarDesc {
float* content;
TH1F* sigHisto;
TH1F* bkgHisto;
bool use;

};
void registerVar(const std::string& name,

float* content,bool active=true);
...
std::map<std::string,VarDesc*> varMap;
...

};

Object oriented programming and C++ A likelihood discriminator - 9



Simple version Enhanced version

Variable list filling

void DiscriminatorBase::registerVar(
const string& name,float* content,
bool active) {

VarDesc* vd=new VarDesc;
vd->content =content;
vd->bkgHisto=
vd->sigHisto=nullptr;
vd->use =active;
varMap[name]=vd;
return;

}

Object oriented programming and C++ A likelihood discriminator - 10



Simple version Enhanced version

Specific variable registration

All variables declared in the derived class have to be
“registered” in the base class

class EventDiscriminator:
public virtual DiscriminatorBase {

...
EventDiscriminator();
...
float chi2;
float muoKink;
...

};

EventDiscriminator::EventDiscriminator() {
registerVar("chi2",&chi2,true);
...

}

Object oriented programming and C++ A likelihood discriminator - 11



Simple version Enhanced version

Looping functions

A lot of functions can simply loop over variables/histograms

float DiscriminatorBase::get() const {
float dSig=1.0; float dBkg=1.0;
map<string,VarDesc*>::const_iterator

iter=varMap.begin();
map<string,VarDesc*>::const_iterator

iend=varMap.end();
while(iter!=iend) {
VarDesc* vd=(*iter++).second;
if (!vd->use) continue;
get(*vd->content,dSig,dBkg,

vd->sigHisto,vd->bkgHisto );
}
return dSig;

}

Object oriented programming and C++ A likelihood discriminator - 12



Simple version Enhanced version

Histogram declaration

The only other function to be called for each specific quantity is
the histogram booking

class DiscriminatorFill:
public virtual DiscriminatorBase {

...
void book(const std::string& name,

int nb,float xmin,float xmax);
...

};

Object oriented programming and C++ A likelihood discriminator - 13



Simple version Enhanced version

Generic histogram creation

void DiscriminatorFill::book(
const string& n,
int nb,float xmin,float xmax) {

map<string,VarDesc*>::const_iterator
iter=varMap.find(n);

map<string,VarDesc*>::const_iterator
iend= varMap.end();

if(iter==iend) return;
VarDesc* vd=iter->second;
string sN="s"+n; const char* s=sN.c_str();
string bN="b"+n; const char* b=bN.c_str();
vd->sigHisto=new TH1F(s,s,nb,xmin,xmax);
vd->bkgHisto=new TH1F(b,b,nb,xmin,xmax);
return;

}

Object oriented programming and C++ A likelihood discriminator - 14



Simple version Enhanced version

Specific histogram creation

class EventDiscriminatorFill:
public DiscriminatorFill,
public EventDiscriminator {

...
void book();
...

};

void EventDiscriminatorFill::book() {
DiscriminatorFill::book("chi2",

4,0.0,40.0);
...

}

Object oriented programming and C++ A likelihood discriminator - 15



Simple version Enhanced version

Discriminator calculation

The specific discriminator variable can be easily computed by
calling the generic function

class EventDiscriminatorRead:
public DiscriminatorRead,
public EventDiscriminator {

...
float get(const Event* ev);
...

};

float EventDiscriminatorRead::get(const
Event* ev) {

compute(ev);
return DiscriminatorRead::get();

}

Object oriented programming and C++ A likelihood discriminator - 16



Simple version Enhanced version

Conclusion

The problem-specific points are now much fewer

The object containing data (Event) in fill and get
functions
The list of variables in EventDiscriminator.h

The registration of variables in
EventDiscriminator.cc

The creation of histograms in
EventDiscriminatorFill.cc

The variables calculation

Object oriented programming and C++ A likelihood discriminator - 17


	Simple version
	

	Enhanced version
	


