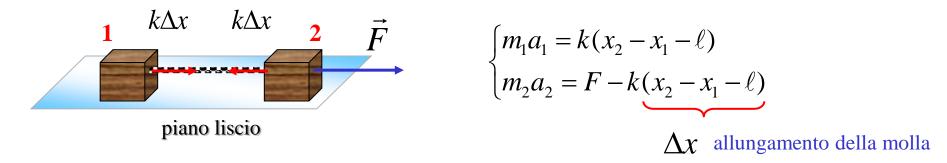
Sistemi di punti materiali

Perché un capitolo dedicato ai sistemi di punti?

$$\left\{ egin{aligned} ec{F}_1 &= m_1 ec{a}_1 \ dots & \ ec{F}_k &= m_k ec{a}_k \end{aligned}
ight.$$

note le forze agenti su ogni punto si può calcolare il moto di quel punto ovvero il moto dell'intero sistema

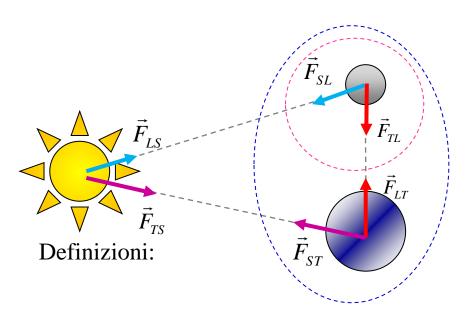
In genere le equazioni non sono indipendenti: $F_1=F_1(r_1,r_2,...r_N)$ ecc. Esempio :



Per 3 corpi, con forze gravitazionali, il problema è analiticamente impossibile!

Si cerca qualche proprietà globale del sistema

Che cos'è un sistema di punti materiali?



posso considerare il sistema Luna oppure il sistema Terra + Luna, o il sistema Terra + Luna + Sole ...

Definito il «Sistema» distingueremo fra

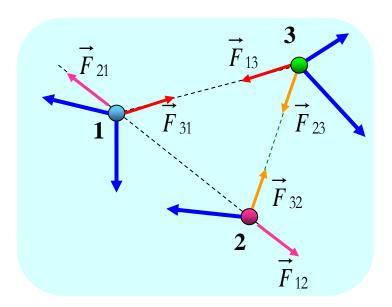
Forze interne: interazione fra elementi del sistema

Forze esterne: interazione di elementi del sistema con elementi non appartenenti al sistema.

se il sistema è la sola Luna, F_{SL} e F_{TL} sono forze esterne (non ci sono forze interne) se il sistema è Terra + Luna, F_{SL} e F_{ST} sono forze esterne, F_{TL} e F_{LT} sono interne se il sistema è Sole + Terra + Luna, tutte le forze nel disegno sono interne

Osservazione: la somma delle forze interne è nulla

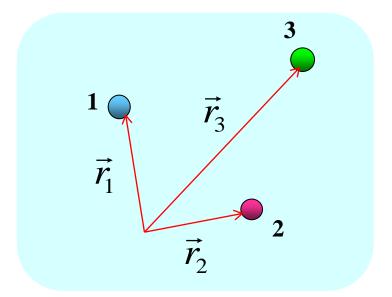
Forze interne ed esterne ad un sistema



Per la 3^a legge della dinamica ...

$$\vec{R}^{(I)} = \sum_{\substack{j,k\\j\neq k}} \vec{F}_{jk} = \sum_{\substack{(k,j)\\j\neq k}} \left(\vec{F}_{jk} + \vec{F}_{kj} \right) = 0$$
somma sulle coppie

... la risultante delle forze interne è nulla.



Dato un sistema di punti materiali $m_1, m_2, ... m_N$, nelle posizioni $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_N$, si definisce

Centro di massa (o baricentro):

$$\vec{r}_{cm} = \frac{\sum_{k} m_{k} \vec{r}_{k}}{\sum_{k} m_{k}} = \frac{\sum_{k} m_{k} \vec{r}_{k}}{m_{TOT}}$$

Centro di massa

Per le singole componenti:

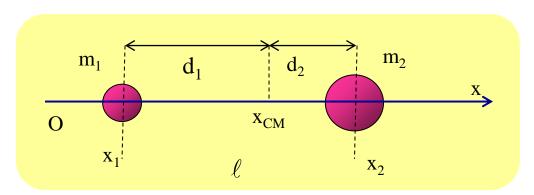
$$x_{cm} = \frac{\sum_{k} m_{k} x_{k}}{m_{TOT}}$$

$$y_{cm} = \frac{\sum_{k} m_{k} y_{k}}{m_{TOT}}$$

$$z_{cm} = \frac{\sum_{k} m_{k} z_{k}}{m_{TOT}}$$

Punto matematico con proprietà notevoli.

Esempio: due punti materiali, a distanza ℓ .



posto per semplicità x₁=0

$$x_{cm} = \frac{m_2 x_2}{m_1 + m_2} = \frac{m_2 \ell}{m_1 + m_2}$$

$$d_1 = \frac{m_2}{m_1 + m_2} \ell \quad d_2 = \frac{m_1}{m_1 + m_2} \ell$$

Centro di massa - velocità

Velocità del centro di massa:

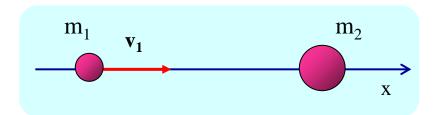
$$\vec{v}_{cm} = \frac{d\vec{r}_{cm}}{dt} = \frac{\sum_{k} m_k \vec{v}_k}{\sum_{k} m_k} = \frac{\vec{p}_{TOT}}{m_{TOT}}$$

Quantità di moto del sistema

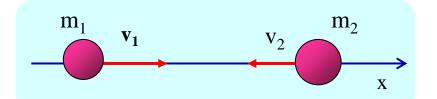
$$\vec{p}_{TOT} = \sum_{k} m_k \vec{v}_k = m_{TOT} \vec{v}_{cm}$$

$$\vec{p}_{TOT} = m_{TOT} \vec{v}_{cm}$$

$$\vec{p}_{TOT} = m_{TOT} \vec{v}_{cm}$$



Esempio.
$$v_{cm} = \frac{m_1 v_1}{m_1 + m_2}$$



Esempio. Sia $m_2 = 3m_1$ e $v_1 = -3v_2$ $v_{cm} = 0$

la quantità di moto totale può essere nulla senza che il sistema sia in quiete.

Centro di massa - accelerazione

Accelerazione del centro di massa:

$$\vec{a}_{cm} = \frac{d\vec{v}_{cm}}{dt} = \frac{\sum_{k} m_k \vec{a}_k}{\sum_{k} m_k} = \frac{\sum_{k} m_k \vec{a}_k}{m_{TOT}}$$

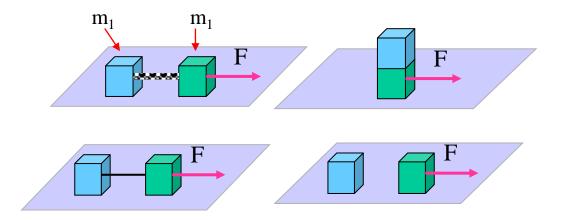
$$\vec{F}_{k,TOT} = \sum_{k} (\vec{F}_{k}^{(I)} + \vec{F}_{k}^{(E)}) = \vec{R}^{(I)} + \vec{R}^{(E)} = \vec{R}^{(E)}$$

$$m_{TOT}\vec{a}_{CM} = \vec{R}^{(E)}$$
 Teorema del moto del centro di massa

Il c.d.m. si muove come un punto materiale di massa m_{TOT} , soggetto ad una forza pari alla risultante delle forze esterne.

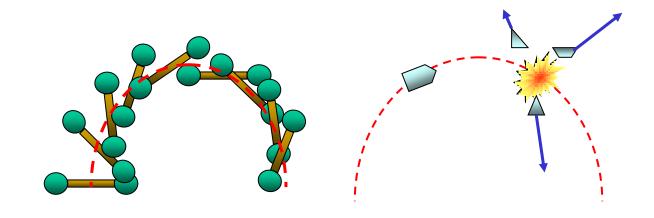
La 2^a legge di Newton, applicata finora ad oggetti puntiformi, si può estendere a qualsiasi sistema, a patto di considerare il moto del suo centro di massa.

Moto del centro di massa



Nei 4 casi cambiano le forze interne, ma non cambia la forza esterna: l'accelerazione del cdm è la stessa:

$$\vec{a}_{CM} = \frac{\vec{F}}{m_1 + m_2}$$



Moto del cdm di un sistema soggetto solo alla forza peso.

$$\vec{R}^{(E)} = m_{TOT}\vec{g}$$

$$\vec{a}_{cm} = \vec{g}$$

Teorema della quantità di moto

$$m_{TOT}\vec{a}_{CM} = m_{TOT} \frac{d\vec{v}_{CM}}{dt} = \frac{d}{dt} (m_{TOT} \vec{v}_{CM}) = \frac{d\vec{p}_{TOT}}{dt}$$

$$\frac{d\vec{p}_{TOT}}{dt} = \vec{R}^{(E)}$$

Teorema della quantità di moto

è solo un modo di scrivere il teorema del Cdm

$$\Delta \vec{p}_{tot} = \vec{p}_f - \vec{p}_i = \vec{J}^{(E)}$$

in forma integrale:

Teorema dell'impulso per un sistema di punti

Sistemi isolati

$$m_{TOT}\vec{a}_{CM} = \vec{R}^{(E)}$$

Nullo in un sistema isolato

$$\Rightarrow \vec{a}_{CM} = 0$$
 ovvero $\vec{v}_{CM} = \cos t$

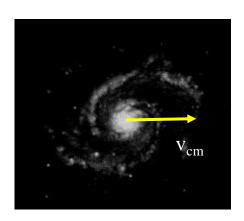
$$\vec{v}_{CM} = \cos t$$

moto uniforme del c.d.m.

$$\frac{d\vec{p}_{TOT}}{dt} = \vec{R}^{(E)} \implies \vec{p}_{TOT} = \cos t$$

$$\Rightarrow \vec{p}_{TOT} = \cos t$$

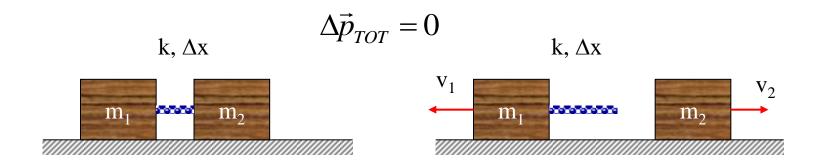
conservazione della quantità di moto



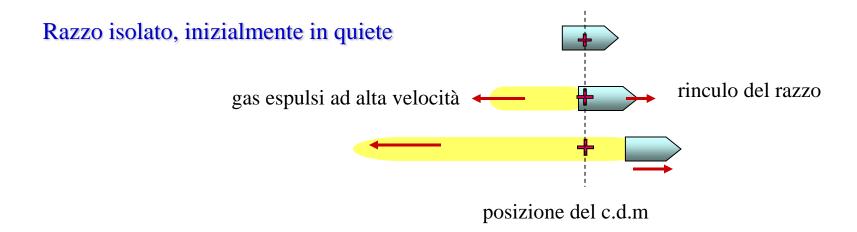
Se la galassia è isolata, la velocità del suo centro di massa è costante.

Senza attrito il cane non potrà modificare la sua velocità (la velocità del suo c.d.m.) per quanto si agiti.

Sistemi isolati. Conservazione della quantità di moto.



Rinculo di un cannone.



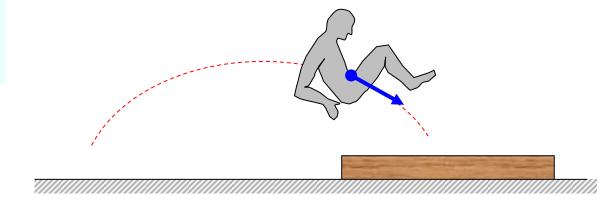
Sistema isolato. Conservazione della quantità di moto

$$\frac{d\vec{p}_{TOT}}{dt} = \vec{R}^{(E)}$$

è una relazione vettoriale, quindi:

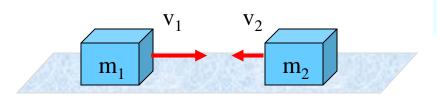
$$\frac{dp_{TOT,X}}{dt} = R_X^{(E)}$$
 se R_X =0 p_x è costante, ecc.
$$\frac{dp_{TOT,Y}}{dt} = R_Y^{(E)}$$

$$\frac{dp_{TOT,Z}}{dt} = R_Z^{(E)}$$



in assenza di attrito, si conserva la componente orizzontale della q.d.m.

Urto fra due punti materiali - Sistema isolato



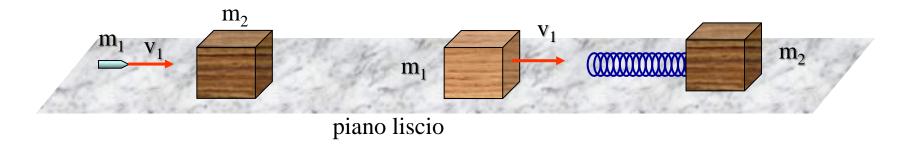
Sistema isolato: la quantità di moto si conserva

$$\vec{p}_f = \vec{p}_i$$

L'energia meccanica non sempre si conserva nell'urto.

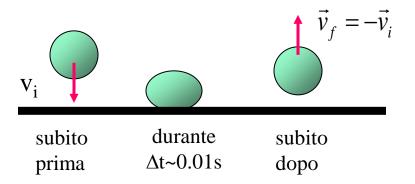
Un urto si dice - elastico se si conserva l'energia cinetica $E_{K\!f}=E_{K\!i}$ - anelastico o inelastico se ciò non avviene. In particolare: totalmente anelastico se i due corpi procedono uniti dopo l'urto

nell'urto totalmente anelastico si ha la massima dissipazione possibile di energia meccanica



Urti - Forze impulsive

Forze impulsive. Esempio di urto elastico



$$\Delta p=2 \text{ Ns}$$

mg $\Delta t \sim -0.001 \text{ Ns}$

$$\Delta \vec{p} = \vec{J}_{TOT} \cong \vec{J}_{IMP}$$

Durante l'intervallo Δt

$$\vec{F}_{IMP} + \vec{F}_{G} \cong \vec{F}_{IMP}$$

Approssimazione impulsiva

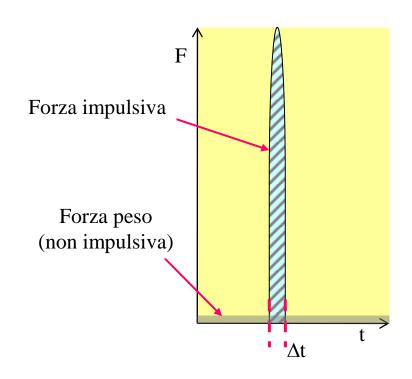
- la collisione dura per un tempo «infinitesimo»
- (⇒ lo spostamento durante l'urto è trascurabile)
- nel quale si sviluppano forze «enormi»
- per cui l'impulso J resta finito

Se m=0.1 kg, v_i = v_f =10m/s e Δt =10ms Nello stesso Δt ha agito anche mg=0.98N.

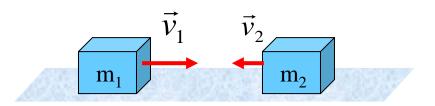
$$\Delta \vec{p} = m \Delta \vec{v} \Rightarrow \Delta p = 2Ns$$

$$\Delta \vec{p} = \vec{J}_{IMP} + \vec{J}_{P}$$

$$\Delta p = J_{IMP} - mg\Delta t \qquad \text{(verso positivo in su)}$$



Urti fra punti materiali. Approssimazione impulsiva



piano orizzontale scabro: $\vec{R}^{(E)} \neq 0$

A rigore la quantità di moto non si conserva:

$$\Delta \vec{p} = \int_{t}^{t+\Delta t} \vec{R}^{(E)} dt = \vec{J}^{(E)}$$

Ma in un urto impulsivo e solo per la breve durata dell'impatto

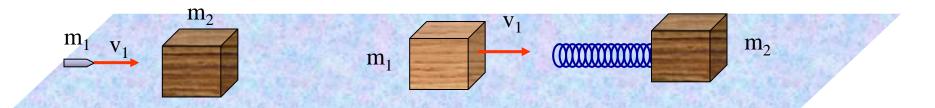
$$\vec{J}^{(E)} \cong 0$$
 $\vec{p}_f \cong \vec{p}_i$

prima e dopo l'urto le forze esterne contribuiscono ma, nell'intervallo Δt della collisione, si possono trascurare.

Per l'energia vale il discorso precedente. Se l'urto è elastico (forze interne conservative) l'energia cinetica si conserva.

approssimazione impulsiva? SI

approssimazione impulsiva? NO

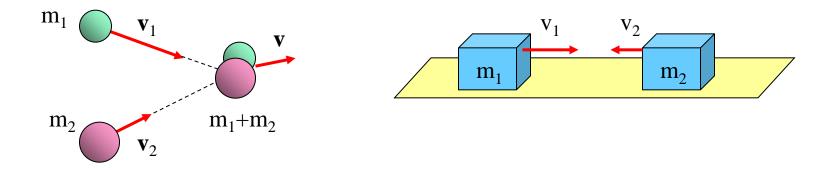


Urto totalmente anelastico

Definizione: l'urto di dice totalmente anelastico se i 2 corpi restano attaccati dopo l'urto In questo caso si ha la massima dissipazione di energia cinetica (v. Teorema di König)

$$m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{v}_f \implies \vec{v}_f = \vec{v}_{CM}$$

nota: conservazione della quantità di moto significa v_{CM} costante



Urto elastico

- Conservazione della quantità di moto
- Conservazione dell'energia meccanica (cinetica)

se sistema isolato o urto impulsivo se l'urto è elastico

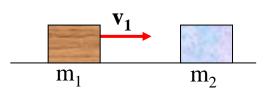
Caso di urto frontale (1D).

$$\begin{cases} m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2' \\ \frac{m_1}{2} v_1^2 + \frac{m_2}{2} v_2^2 = \frac{m_1}{2} v_1'^2 + \frac{m_2}{2} v_2'^2 \end{cases}$$

 $\Rightarrow \begin{cases} v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2} \\ v_2' = \frac{(m_2 - m_1)v_2 + 2m_1v_1}{m_1 + m_2} \end{cases}$

Caso particolare: "bersaglio inizialmente fermo".

«prima»



m₂ inizialmente ferma.

$$v_1' = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_1$$

$$v_2' = \left(\frac{2m_1}{m_1 + m_2}\right) v_1$$

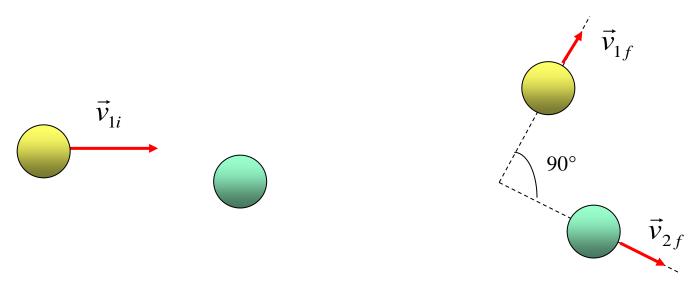
«dopo»

$$m_1 = m_1$$

$$m_1 < m_2$$

Urto elastico in un piano. Un caso interessante

Caso particolare: due corpi di uguale massa con bersaglio inizialmente fermo



le direzioni di m₁ e m₂ dopo l'urto formano un angolo di 90°

$$\begin{cases} m\vec{v}_{1i} = m\vec{v}_{1f} + m\vec{v}_{2f} \\ \frac{m}{2}v_{1f}^2 + \frac{m}{2}v_{2f}^2 = \frac{m}{2}v_{1i}^2 \end{cases}$$

$$v_{1f}^2 + v_{2f}^2 + 2\vec{v}_{1f} \cdot \vec{v}_{2f} = v_{1f}^2 + v_{2f}^2$$
C.V.D.