Verifica della distribuzione gaussiana degli errori

Operazioni preliminari e misura

- 1. accendere l'interruttore principale del banco di misura
- 2. accendere il cronometro e selezionare la massima risoluzione (10^4)
- 3. si accende il compressore, regolandone la portata (tipicamente posiz. 2,5 o 3) (non modificare la portata del compressore durante la misura)
- 4. si definisce la posizione orizzontale della guida agendo sulla vite V. Una volta trovata, si blocca la ghiera alla base della vite micrometrica come riferimento.
- 5. portare la slitta all'inizio della guida, in modo che aderisca all'elettrocalamita, e lanciarla premendo (o rilasciando) il pulsante P
- 6. verificare il corretto funzionamento del cronometro e la riproducibilità della misura
- 7. iniziare la serie di «almeno» 200 misure

Si riportano i dati in una colonna su un foglio EXCEL. Si calcola la media e la dev. standard

	А	В	С	D	E						
1						= 05-0\$200					
2											
3						un prin					
4		k	Tk	Zk		un prin					
5		1	1,2565	0,0035	~						
6		2	1,2606	0,0076		0,0150					
7		3	1,2524	-0,0006							
8		4	1,2449	-0,0081		0,0100					
9		5	1,2453	-0,0077							
10		6	1,2502	-0,0028		0,0050					
11		7	1,2503	-0,0027							
12		8	1,2562	0,0032		0,0000					
13		9	1,2566	0,0036							
14		10	1,2605	0,0075		-0,0050					
15		11	1,2552	0,0022							
						-0,0100					
		eco	ecc	ecc							
		000				-0,0150					
202		198	1,2515	-0,0013							
203		199	1,2520	-0,0008		-0,0200					
204		200	1,2479	-0,0049							
205						= MEDIA(C5:C					
206		<t></t>	1,2528	0,0000							
207		σ	0,0048	0,0048							

06 deviazione dalla media (scarto)

un primo controllo: «ideogramma» degli scarti

L'ideogramma può evidenziare situazioni problematiche

Uno o più punti <u>nettamente</u> «fuori dalla media». Sono quasi certamente errori di trascrizione. <u>Meglio eliminarli</u> e ricalcolare media e dev. standard

Il valore medio cambia nel tempo. E' un problema della strumentazione Non c'è niente da fare.

Bisogna costruire l'istogramma degli scarti. Per far questo

- 1. si sceglie un passo opportuno Δz
- 2. e tanti intervalli di larghezza Δz , ovvero tanti punti $z_1, z_2 \dots$ con passo Δz
- scelto ad es. l'intervallo [z₁, z₂] si conta il numero di scarti compresi fra z₁ e z₂, lo chiamiamo N₁
- 4. si ripete per tutti gli altri intervalli; troveremo i numeri N₂, N₃, ...
- 5. si rappresentano questi valori tramite un «istogramma»

un valore suggerito di Δz è metà della deviazione standard , o non molto diverso

Il conteggio dei valori compresi nei diversi intervalli potrebbe essere assai noioso, ma per fortuna c'è una funzione EXCEL che lo fa per noi

$= 200^{*}H3$ F G Н 1 0.0048 σ Δz 0,0024 0,48 Α freq. z med gauss 0 -0,0240 0 -0,0228 -10 0 -0,0204 -9 -0,0216 -0,0192 0 -0,0180 -8 -0,0168 0 -0,0156 -7 -0,0144 1 -0,0132 -6 -0,0120 5 -0,0108 -5 7 -0,0084 -0,0096 -4 -0,0072 16 -0,0060 18,26 -3 -2 -0,0048 32 -0,0036 30,11 -0,0024 33 -0,0012 38,67 -1 0,0000 44 0,0012 38,67 0 0,0024 31 0,0036 30,11 1

2

3

4

5

6

7

8

9

10

= (H26+H27)/2

0,0048

0,0072

0,0096

0,0120

0,0144

0,0168

0,0192

0,0216

0,0240

Analisi dei dati. 2

К

0,00

0,00

0,04

0,20

0,91

3,17

8,63

8,63

0,91

0,20

0,04

0,00

0,00

1,75

17 0,0060 18,26

1 0,0108 3,17

12 0,0084

1 0,0132

0 0,0156

0 0,0180

0 0.0204

0 0,0228

0 0,0120

con i valori di frequenza si traccia l'istogramma degli scarti

la frequenza in rosso (16) è il numero di scarti compresi fra i due estermi in rosso; la loro media è il valore blu della colonna «z med». In questo punto si calcolerà la gaussiana

gaussiana con lo stesso centro (0), stessa larghezza (σ) e la stessa area. Da calcolare «al centro degli intervalli»

= H\$4*DISTRIB.NORM.N(J26;0;H\$3)

1

La distribuzione misurata è veramente gaussiana?

Questa domanda rientra nel vasto campo delle «decisioni statistiche», ovvero della valutazione di un'ipotesi in base a risultati che sono per forza limitati e soggetti ad incertezze.

In genere non è possibile dire che l'ipotesi è vera o falsa, ma solo la probabilità delle due alternative. Cerchiamo un criterio quantitativo.

• quanto vale l'errore dei singoli conteggi?

• come valutare la bontà dell'accordo?

bisogna confrontare le differenze istogramma-gaussiana intervallo per intervallo

in pratica si calcola il «Chi-quadro»

$$\chi^{2} = \sum_{k} \frac{[N_{k} - g(z_{k})]^{2}}{\sigma_{k}^{2}} \quad \text{dow}$$

'e

N _k	è il numero di conteggi nell'intervallo k-mo
Z _k	è il valore di z al centro dell'intervallo
g (z _k)	è la funzione gaussiana valutata in z _k
σ_k	è l'incertezza su N _k

La somma si calcolerà sui canali in cui N_k è «abbastanza grande», in pratica una decina di canali intorno al valore centrale.

per l'errore si assumerà

$$\sigma_k = \sqrt{N_k}$$
 dev. standard per distribuzione di Poisson

$$\chi^2 = \sum_k \frac{[N_k - g(z_k)]^2}{N_k}$$

Metodo: valutare la probabilità di ottenere la nostra distribuzione da N misure, nell'ipotesi che queste abbiano veramente una distribuzione gaussiana (ipotesi da verificare)

- se questa è particolarmente piccola, possiamo scartare l'ipotesi
- se è abbastanza grande diremo che i dati sono compatibili con l'ipotesi

per far ciò bisogna conoscere la distribuzione del Chi-quadro, usando le tavole o meglio la funzione DISTRIB.CHI.QUAD(...) di EXCEL.

«gradi di libertà» = N° di punti (dell'istogramma) - N° parametri utilizzati 3 nel nostro caso

se i punti sono 11 i GdL sono 8. Il valore di χ^2 più probabile è 5,7.

0,12

supponiamo di aver trovato il valore

se è «abbastanza grande» diremo che l'ipotesi è «confermata»

se è «troppo piccola» diremo che l'ipotesi è «smentita»

L'area fra χ_0^2 e infinito si calcola con la funzione DISTRIB.CHI.QUAD(χ_0^2 ; GdL; 1)

il valore discriminante è arbitrario. In molti casi si utilziza il 5% (0.05) oppure l' 1% (0.01). Non bisogna però dimenticare il significato puramente statistico.

Per esempio, se 100 studenti misurano una distribuzione autenticamente gaussiana, ci aspettiamo che uno di loro (in media) trovi un χ^2 «troppo grande» a livello dell' 1%.

Con 8 Gradi di Libertà come nell'esempio :

una probabilità del 5% corrisponde a $\chi^2 = 15,5$ una probabilità dell' 1% corrisponde a $\chi^2 = 20$ una probabilità di 0,1% corrisponde a $\chi^2 = 26$

i dati sono compatibili con una distribuzione normale o gaussiana

per chi avesse problemi con la funzione di distribuzione del chi-quadro, ecco una tabella i valori di interesse

10%		5%	2%	1%	0,5%	0,2%	0,1%
n= 1	2,71	3,84	5,41	6,63	7,88	9,55	10,83
2	4,61	5,99	7,82	9,21	10,60	12,43	13,82
3	6,25	7,82	9,84	11,34	12,84	14,80	16,27
4	7,78	9,49	11,67	13,28	14,86	16,92	18,47
5	9,24	11,07	13,39	15,09	16,75	18,91	20,52
6	10,64	12,59	15,03	16,81	18,55	20,79	22,46
7	12,02	14,07	16,62	18,47	20,28	22,60	24,32
8	13,36	15,51	18,17	20,09	21,96	24,35	26,12
9	14,08	16,92	19,68	21,67	23,59	26,06	27,88
10	15,99	18,31	21,16	23,21	25,19	27,72	29,59
11	17,27	19,68	22,62	24,72	26,76	29,35	31,27
12	18,55	21,03	24,05	26,22	28,30	30,96	32,91
13	19,81	22,36	25,47	27,69	29,82	32,54	32,53
14	21,06	23,68	26,87	29,14	31,32	34,09	36,12
15	22,31	25,00	28,26	30,58	32,80	35,63	37,70

gradi di libertà

probabilità che il χ^2 superi il valore in tabella

Analisi dei dati. 2 (+ 3)

L'errore tipico nel confronto con la distribuzione normale è lo «sfasamento» della curva rispetto ai dati, come nell'esempio qui sotto. In generale questo sfasamento si vede chiaramente «ad occhio»

quali le cause? Possono essercene molte, ma due sono ricorrenti:

- 1. nell'esempio, si sono graficati i punti 17:127 per l'istogramma, K8:K26 per la gaussiana (il χ^2 però è corretto)
- 2. un altro motivo è non aver calcolato la gaussiana nel punto giusto (e allora è sbagliato anche il χ^2)