StatPatternRecognition:
User Guide

Ilya Narsky, Caltech

A

Also see
http://www.slac.stanford.edu/BFROOT/www/Organization/CollabMtgs/2005/detSep05/Wed4/narsky.pdf

Ilya Narsky BaBar Meeting, December 2005

Classifiers in StatPatternRecognition

binary split (aka “binary stump”, aka “cut”)

linear and quadratic discriminant analysis
decision trees

bump hunting (PRIM, Friedman & Fisher)
AdaBoost (Freund and Schapire)

bagging and random forest (Breiman)

variant of arc-x4 (Breiman)

multi-class learner (Allwein, Schapire and Singer)
combiner of classifiers

interfaces to Stuttgart Neural Network Simulator
feedforward backprop Neural Net and radial basis
function Neural Net — not for training! Just for reading the
saved net configuration and classifying new data

in red — will be covered today

Ilya Narsky BaBar Meeting, December 2005 3

g
Other tools in StatPatternRecognition
m bootstrap

m validation and cross-validation (choosing optimal
parameters for classifiers)

m estimation of data means, covariance matrix and
kurtosis

m goodness-of-fit evaluation using decision trees
(Friedman, Phystat 2003)

= reading from Ascii or Root
= saving input/output into Hbook or Root
= filtering data (imposing cuts, choosing input
variables and classes)
in red — will be covered today

Ilya Narsky BaBar Meeting, December 2005 4

"
Message for today

® SPR is a package for multivariate classification
[1as in “dozens or hundreds of variables”

1 hardly expect any improvement over, e.g., 5D data
classified by a neural net

1 however, if you have 20+ input variables, it is almost
guaranteed that SPR will outperform NN

= If you care about classification quality at the
level of a few percent:

1 must try both boosted decision trees and random
forest (no clear prediction for which one will work
better in your particular case)

1 must do a thorough job of selecting classifier
parameters by using (cross-)validation

m Use as many variables as you can and invest
time in choosing classifier parameters!
Ilya Narsky BaBar Meeting, December 2005 5

o
Status of SPR

= All statements and examples in the present talk are
based on tag V02-03-04

1 | recommend updating to latest V-tag regularly

= Updates since September meeting:
1 support for reading input data from Root (thanks to Jan Strube)

1 a couple of new classifiers implemented (a hybrid of boosting
and random forest, arc-x4)

1 SprTopdownTree, a faster implementation of decision tree.
Random forest has become much faster!

1 computation of quadratic and exponential loss for cross-
validation

1 goodness-of-fit method added (although not tested on physics)

[treatment of multi-class problems
= multi-class learner implemented
= easy selection of input classes for two-class methods

Ilya Narsky BaBar Meeting, December 2005

SprAbsClassifier

/

SprAdaBoost

SprBagger

SprFisher

SprDecisionTree

SprBinarySplit

SprBumpHunter

Y

SprAbsTwoClassCriterion [€—

A

SprTwoClassGinilndex

SprTwoClassCrossEntropy

SprTwoClassSignalSignif

SprTwoClassSignalPurity

SprAbsClassifier

::makeTrained()

*

SprBagger

SprAbsTrainedClassifier

*

Y

SprTrainedBagger

SprAbsReader

/)

SprAbsFilter
protected: SprData* data;

/)

SprEmptyFilter SprBoxFilter

SprSimpleReader

SprRootReader

"
Bump Hunting (PRIM) freaman ana fisher, 1909

= Works in two stages:

1 Shrinkage. Gradually reduce the size of the box. At
each step tries all possible reductions in all
dimensions and chooses the most optimal one. Rate
of shrinkage is controlled by the “peel” parameter =
fraction of events that can be removed from the box in
one step.

1 Expansion. Now tries all possible expansions in all
dimensions and chooses the most optimal one.

m Use this algorithm if you want to find a
rectangular signal region

= Optimization criteria for the algorithm:
1 plugged through an abstract interface

Ilya Narsky BaBar Meeting, December 2005 8

Optimization criteria — |

SprBumpHunter (SprAbsFilter* data,

const SprAbsTwoClassCriterion* crit,

int nbump, // number of bumps

int nmin, // min number of events per bump
double apeel); // peel parameter

class SprAbsTwoClassCriterion ({

public:
/*

Return figure of merit.

wcor(0 -
wmisO -
wcorl -
wmisl -

*/

correctly classified weighted fraction of background
misclassified weighted fraction of background
correctly classified weighted fraction of signal
misclassified weighted fraction of signal

virtual double fom(double wcor0O, double wmisO,

Ilya Narsky

double wcorl, double wmisl) const = 0;

BaBar Meeting, December 2005 9

Optimization criteria — ||

SprTwoClassGiniIndex

SprTwoClassIDFraction “technical” (for decision
SprTwoClassCrossEntropy tree optimization)
SprTwoClassSignalSignif ™

SprTwoClassBKDiscovery

SprTwoClassTaggerEff > for physics
SprTwoClassPurity

SprTwoClassUniformPriorUL90 _/

Ilya Narsky BaBar Meeting, December 2005

10

Bump hunter in SPR

Ready-to-go executable: SprBumpHunterApp
» SprBumpHunterApp -b 1 -n 100 -x 0.1 -¢c 2 -w 0.001 -£f

bump.spr -t validation.pat -o training.hbook -p
validation.hbook training.pat

Find one bump with at least 100 events by optimizing the signal significance (-c 2)
using peel parameter 0.1. Signal will be weighted down by 0.001. The found bump
will be saved into bump.spr. Signal significance will be evaluated for validation
data. Training and validation data will be saved into training.hbook and
validation.hbook.

Found box O

Validation FOM=0.270037
Content of the signal region: W0=911 W1=8.187 N0=911 N1=8187

» cat bump.spr
Bumps: 1

Bump 0 Size?2 FOM=0.263075 WO0=957 W1=8.173 N0=957 N1=8173
Variable x0 Limits -6.97225 6.8124
Variable x1 Limits -6.373 -3.55095

"

Optimization of the bump hunter parameters

= Only one degree of freedom — peel
parameter

m Choose the optimal peel parameter by
maximizing the selected figure of merit on
validation data

m Test bump hunter performance on an
Independent test sample

Ilya Narsky BaBar Meeting, December 2005 12

g
Choice of classifier parameters
= optimize your model on the training sample
m stop optimization when validation error reaches
minimum
m use a test sample to assess model error

training validatior* test

Training error seriously underestimates true model error.
Validation error somewhat underestimates true model error.

Test error is an unbiased estimate of the true model error.

In principle, if the validation set is fairly large and the FOM estimate is
based on statistically large subsets, the test error should be close to
the validation error. Hence, the test stage can be omitted.

Use with caution!!!
Ilya Narsky BaBar Meeting, December 2005 13

What if you have barely enough
data for training?

® Resampling of training data:
O cross-validation
1 bootstrap

m Basic idea: make many test samples by resampling the
original training set

= Do not use cross-validation for big samples: slow and
unnecessary

m More info:

1 Hastie, Tibshirani and Friedman “The Elements of Statistical
Learning”; chapter 7 “Model Assessment and Selection”

in red — will be covered today

Ilya Narsky BaBar Meeting, December 2005 14

"
Cross-validation

= Split data into M subsamples

® Remove one subsample, optimize your model on the
kept M-1 subsamples and estimate prediction error for
the removed subsample

= Repeat for each subsample
1 N
m(i): {1,2,..Ni—>{L2...M} Ry =N2L(yi,f_m(,-)(xi))
i=l
= How to choose M?

1 M=N => CV error estimator is unbiased for the model error but
can have large variance

1 M«N => CV error estimator has small variance but can have
large bias

= | typically choose M=5-10
Ilya Narsky BaBar Meeting, December 2005 15

L

Now that we have covered
first principles using the
bump hunter as an
example, let us move on to
more sophisticated
classifiers =>

Ilya Narsky BaBar Meeting, December 2005

16

- Decision trees emerged in mid 80’s:
DeC|S|0n Trees CART (Breiman, Friedman etc), C4.5

. =100
PMT Hits?

= 0.2 GeV

39/1

7/1 2/9

(Quinlan) etc

Criteria used for commercial trees
(p = fraction of correctly classified events)

O(p)=p
O(p)=—-2p(-p) Gini index
O(p)=plogp+ (- p)log(l- p) cross-entropy
Split nodes recursively until a
stopping criterion is satisfied.

Parent node with W events and correctly classified
p*W events is split into two daughters nodes iff

WQ(p) < W;Q(pl) + VVzQ(pz) Decision tree output:

Stopping criteria:

« unable to find a split that satisfies the split

criterion

- discrete scoring: 1 if an
event falls into a signal node,
0 otherwise

» continuous scoring: for

« maximal number of terminal nodes in the tree example, signal purity,
 minimal number of events per node s/(s+b)

Secision trees in StatPatternRecognition

S,B | s=s,+s,

/ \I:D’ =B4+B;

81’ B1 82’ BZ

StatPatternRecognition allows the
user to supply an arbitrary criterion
for tree optimization by providing an
implementation to the abstract C++
interface.

At the moment, following criteria are

implemented:

 Conventional: Gini index, cross-
entropy, and correctly classified
fraction of events.

 Physics: signal purity, S/v/S+B, 90%

Bayesian UL, and 2*(+/S+B- y/B).

Conventional decision tree, e.g.,
CART:

- Each split minimizes Gini index:
. SB S.B
Gini = ——1— 4+ —=—2
S,+B, S,+B,

- The tree spends 50% of time finding
clean signal nodes and 50% of time
finding clean background nodes.

Decision tree in
StatPatternRecognition:

- Each split maximizes signal
significance:
Sl Sz

JS +B, /S, +B,

Signif = max

Decision tree in SPR

Ready-to-go executable: SprDecisionTreeApp

» SprDecisionTreeApp -n 100 -¢ 2 -m -w 0.1 -f tree.spr -t
validation.pat -o training.hbook -p validation.hbook
training.pat

Build a decision tree with at least 100 events per leaf by optimizing the signal
significance (-c 2). Signal will be weighted down by 0.1. The found leaf nodes will
be merged (-m). Signal significance will be evaluated for validation data. Training
and validation data will be saved into training.hbook and validation.hbook.

Optimization criterion set to Signal significance S/sqrt(S+B)

Decision tree initialized with minimal number of events per node 100

Included 5 nodes in category 1 with overall FOM=6.48006 W1=198.4 W0=739 N1=1984
NO=739

SprDecisionTree (SprAbsFilter* data,
const SprAbsTwoClassCriterion* crit,
int nmin, bool doMerge, bool discrete,
SprIntegerBootstrap* bootstrap=0) ;

How does the tree merge nodes?

= Merging algorithm:
1 sort all nodes by signal purity in descending order =>
vector of N nodes

1 start with the node with the highest purity and add
nodes from the sorted list sequentially; at each step
compute the overall FOM => vector of N FOM'’s

1 choose the element with the largest FOM and use the
corresponding combination of nodes
m This algorithm only makes sense for asymmetric
FOM's:
1 SprTwoClassSignalSignif, SprTwoClassBKDiscovery,

SprTwoClassTaggerEff, SprTwoClassPurity,
SprTwoClassUniformPriorUL90

1 use —m (doMerge=true) option only for these!!!

Ilya Narsky BaBar Meeting, December 2005 20

"
Optimization of the decision tree parameters

= Only one degree of freedom — minimal number of events
per leaf node

m Choose the optimal leaf size by maximizing the selected
figure of merit on validation data

m Test decision tree performance on an independent test

sample

Cross-validation:

» SprDecisionTreeApp -¢c 2 -w 0.1 -m -x 5 —-q
“2,5,10,20,50,100,200,500” training.pat

Cross-validated FOMs:

Node
Node
Node
Node
Node
Node
Node
Node

size=
size=
size=
size=
size=
size=
size=
size=

2

5
10
20
50
100
200
500

FOM=
FOM=
FOM=
FOM=
FOM=
FOM=
FOM=
FOM=

.95209
.36133
.59742
.55526 < | would choose this one
.55019
2.5308
2.5293
2.27798

NNMNMDNBR

Output of a decision tree

> cat tree.spr

Trained Decision Tree: 5 signal nodes. Overall FOM=6.48006 W0=739 W1l=198.4
NO0=739 N1=1984

Node 0 Size 8 FOM=5.35067 W0=161 W1=83.7 NO=161 N1=837
Variable LeadingBTaggedJetPt Limits -1.0045 2.8145
Variable LeadingUntaggedJetPt Limits -0.33205 4.1695
Variable Pt_JetlJet2 Limits -1.79769e+308 2.0915
Variable InvariantMass AllJets Limits 0.3405 5.6125
Variable DeltaRJetlJet2 Limits -1.79769e+308 2.724
Variable Cos_BTaggedJetAllJets_AllJets Limits -1.7245 1.79769e+308
Variable BTaggedTopMass Limits -0.9932 2.3885
Variable QTimesEta Limits -2.3785 1.79769e+308
Node 1 Size 11 FOM=1.13555 wW0=31 W1l=7 NO0=31 N1=70

- For each node, shows only variables on which cuts are imposed, e.g., for Node 0 only
8 out of 11 variables are shown.
* Gives a full list of leaf nodes in the order of decreasing signal purity.

Ilya Narsky BaBar Meeting, December 2005 22

Bump hunter vs decision tree

Bump Hunter

Decision Tree

finds one rectangular region
that optimizes a certain FOM

finds a set of rectangular
regions with a globally
optimized FOM

cross-validation not available

can cross-validate

a conservative and slow
algorithm
(shrinkage/expansion); the
speed is controlled by the peel
parameter

a greedy and fast algorithm;
the speed and size of the tree
Is controlled by the minimal
number of events per leaf
node

Ilya Narsky BaBar Meeting, December 2005

23

"
Ad a BOOSt o I Freund and Schapire, 1997

= Combines weak - o |
classifiers by applying lteration O w,m=1/N; i=1.. N
them sequentially iteration K: f™)(x): &, = ZWI-(K_I) <05

misclassified
= At each step enhances (K1)

. . e : K =W
weights of misclassifiedcorrectly classified events: w;™" = 2)
events and reduces P
weights of correctly misclassified events: w'*) = Wi
classified events 28

= lterates as long as weight of classifier K : g, = 1log(1 - ng
weighted misclassified 2 Ex

fraction less than 50%
and the requested
number of training

C
cycles is not exceeded f(x)=> B f M (x)
K=1

To classify new data:
weighted vote of all classifiers

AdaBoost — ||

= Formally, can be derived from exponential loss:
one can show that

L(y, f(x))= exp(~ 3/ (x)) L l-g

=—lo
P > log .

(IBK’ GK) = arg IBIGH ZeXp[— Vi (fK—l (xi) + ﬂG('xi))] W,-(K) = ngK_l) exp(— By y.Gy (xi))

i=1

m AdaBoost implements a weak learning algorithm:

C C 2
£ < 2CH\/51<(1 — &) Sexp| — 22(1— 5,{)
K=1 K=1 2
= A nice probabilistic property:

P(y=+1[x) _
Ply— 1)~ P/ @)

= Margin theory: test error keeps decreasing even after the
training error turns zero

Ilya Narsky BaBar Meeting, December 2005 25

Boosting in SPR

Ready-to-go executables:
SprAdaBoostBinarySplitApp and SprAdaBoostDecisionTreeApp

» SprAdaBoostDecisionTreeApp -n 100 -1 1000 -f adatree.spr -t
validation.pat -d 5 training.pat

Boost 100 decision trees with at least 1000 events per leaf and save the trained
classifier configuration into adatree.spr. Display exponential loss for validation data
every 5 trees. By default, Gini index will be used for tree construction (I don’t
recommend changing optimization FOM for boosted trees ever).

» SprAdaBoostDecisionTreeApp -n 0 -r adatree.spr -o test.hbook
-s test.pat

Read AdaBoost configuration from adatree.spr and apply it to test data. Save test
data and AdaBoost output into test.nbook

»SprAdaBoostBinarySplitApp -n 100 -f adasplit.spr training.pat
»SprAdaBoostBinarySplitApp -n 0 -r adasplit.spr -o test.hbook
—s test.pat

Train and test boosted binary splits with 100 splits per dimension.

Boosted splits vs boosted trees

Boosted splits Boosted trees

Applies decision splits on input
variables sequentially: split 1
on variable 1, split 2 on
variable 2 etc; in the end goes
back to variable 1 and starts

Tree finds an optimal decision
split by choosing among all
input variables.

over.
Splits are applied to the whole | Splits are applied recursively
training set. to build the tree structure.
Training is very fast and Training is slower but the
robust, typically at the predictive power is usually
expense of less-than-perfect superior to that of boosted
predictive power. splits.

Ilya Narsky BaBar Meeting, December 2005

Optimization of AdaBoost parameters

m Boosted binary splits are very robust. Validation stage
can be omitted. Choose at least several dozen splits per
iInput dimension.

= Boosted trees have two degrees of freedom

1 minimal leaf size => needs to be found by (cross-)validation

1 number of trees built => the more, the better (can become CPU-
expensive for large samples with many input variables)

Cross-validation:
» SprAdaBoostDecisionTreeApp -n 20 -g 1 -x 5 —-q
*100,200,500,1000,2000,3000” training.pat

(“-g 17 displays quadratic loss; “-g 2” will display exponential loss)

Cross-validated FOMSs: >
NZZZSSZ:; = 100 ° FOM= 0.212612 Lqua(y,f(x)): (y—f(x))

Node size= 200 FOM= 0.19664
Node size= 500 FOM= 0.191809 Lexp (y, f(x)) - exp(— yf(x))
Node size= 1000 FOM= 0.185834
Node size= 2000 FOM= 0.210297

Node size= 3000 FOM=-1.79769e+308

m Boosted trees typically benefit from large leaves.
Choose leaf size ~5-50% of the number of
events in the smallest class.

= If the leaf size if poorly chosen, AdaBoost
performance degrades as you build more and
more trees. You can monitor this by looking at
validation data.

m Several hundred trees are more than enough for
all practical problems | looked at. You can keep
adding more trees, but AdaBoost error won’t go
down significantly.

= Boosted splits are robust and incredibly fast.
However, typically give a worse model error than
boosted trees or random forest.

Ilya Narsky BaBar Meeting, December 2005 29

How to look at AdaBoost output

= The mysterious “-s” option

1 forces AdaBoost to display output in the range
(-infty,+infty) (“standard” AdaBoost)

1 by default AdaBoost output is in range [0,1]

= Allows to use probabilistic properties of
AdaBoost

12000 boosted trees in 156 dimensions
> paw r | |—|L;>Obar | b
> h/fil 1 test.hbook 4096 10000} —— B0 -
> n/pl 1.(1/(l+exp(-2*ada))) i=0 SOOO- _
> n/pl 1.(1/(l+exp(-2*ada))) i=1 ! ! ! s ieEeE
6000 i
4000
=
2000
§00 025 050 075 1.00

Ilya Narsky BaBar Meeting, December 2005 30

"

How to read saved AdaBoost configuration

m “-r" option for AdaBoost executables
1 stands for “resume”, not “read”

O after reading the saved configuration, you can resume

training...
> SprAdaBoostDecisionTreeApp -n 100 -1 1000 -r
adatree nl00.spr -f adatree n200.spr training.pat

O ...or just classify events
> SprAdaBoostDecisionTreeApp -n 0 -r adatree nl00.spr -o

test.hbook test.pat
=N C++ SprAdaBoostTopdownTreeReader reader;
bool readStatus = reader.read(“my input file”);
SprTrainedAdaBoost* trained = reader.makeTrained() ;
vector<double> input point = . ;
double r = trained->response (input point);
OR
SprAdaBoost ada(..,ncycles=100,..)
reader.setTrainable (&ada) ;
bool trainStatus = ada.train();

Random Forest (Breiman, 2001)

= “[Random Forest] is unexcelled in accuracy among
current algorithms.” — Leo Breiman,
http://www.stat.berkeley.edu/users/breiman/RandomForests/
= Random forest = bagging + random selection of input
variables for each decision split
= Bagging = bootstrapping of training points
1 draw N points out of sample of size N => one bootstrap replica
1 build many decision trees on bootstrap replicas of the training
sample and classify new data by the majority vote
= Random selection of input variables
1 for each decision split, randomly select d out of D variables
1 d is set by the user

Ilya Narsky BaBar Meeting, December 2005 32

http://www.stat.berkeley.edu/users/breiman/RandomForests/

Random Forest in SPR

Ready-to-go executable: SprBaggerDecisionTreeApp

» SprBaggerDecisionTreeApp -n 100 -1 10 -s 6 —g 1 -f
bagtree.spr -t validation.pat -d 5 training.pat

Build 100 decision trees with at least 10 events per leaf and save the trained
classifier configuration into bagtree.spr. Display quadratic loss (-g 1) for validation
data every 5 trees. Randomly select 6 variables to be considered for each decision
split.

» SprBaggerDecisionTreeApp -n 0 -r bagtree.spr -o test.hbook
test.pat

Read random forest configuration from bagtree.spr and apply it to test data. Save
test data and random forest output into test.hbook

Bagger interface is very similar to that of AdaBoost. Use similar
syntax for saving classifier configuration, reading it back from file,
resuming training, cross-validation etc.

Optimization of Random Forest

m Random forest has 3 degrees of freedom
1 minimal leaf size => needs to be found by (cross-)validation

1 number of randomly drawn input variables for each decision split
=> needs to be found by (cross-)validation

1 number of trees built => again, the more the better

Cross-validation:
» SprBaggerDecisionTreeApp -n 10 -s 6 -g 1 -x 5 —-q

“1,2,5,10,20,50,100” training.pat
(randomly select 6 variables per split and display quadratic loss)

Cross-validated FOMs:

Node size= 1 FOM= 0.17846
Node size= 2 FOM= 0.175674
Node size= 5 FOM= 0.172535
Node size= 10 FOM= 0.173444
Node size= 20 FOM= 0.174015
Node size= 50 FOM= 0.176392
Node size= 100 FOM= 0.178914

= In my experience, best performance is obtained
when “-s” command-line option
(nFeaturesToSample) is chosen in the range
[D/2,D] (D = dimensionality)
Note that sampling is with replacement, so if you set
nFeaturesToSample=D, on average only 63% of input
variables will be used for each decision split
= If you choose nFeaturesToSample small,
random forest will train faster...

...but you may not save any CPU cycles
because you may need to build more trees to
obtain comparable performance.

= To compare performance, | recommend using:
nFeaturesToSample*nTreesToBuild = const

Ilya Narsky BaBar Meeting, December 2005 35

= Random forest typically favors very small leaves
and huge trees. Choose leaf size ~0.1% of the
number of events in the smallest class.

m Training time is comparable with that for boosted
trees: RF trees are bigger but no CPU is spent
on reweighting events.

= Classification of new data is generally slower by
RF than by boosted trees. But it is far below the
level when you need to worry.

= Unlike boosted trees, you can try to “random-
forest” asymmetric FOM's such as, e.g., signal
significance (-c command line option). For some
problems this can produce a significant
Improvement.

Ilya Narsky BaBar Meeting, December 2005 36

L

Boosted trees or random forest?

random forest in 156 dimensions boosted trees in 156 dimensions
16000 12000 e e e
i Bob | - — BObar .
_) o 10000+ —— B0 .
12000 % — B0 - - _1'
I 8000 =
8000 % - E 6000 i
JFJ_}]
| 4000
4000
2000
90 Tos 00 05 o0 Joo 025 050 075 1.00
Q=28.9% Q=25.4%

There is no generic answer to this question. Try both!!!

Ilya Narsky BaBar Meeting, December 2005

Multi-class problems

= Two popular strategies for K classes:
1 one against one: build K*(K-1)/2 classifiers
1 one against all: build K classifiers

m User can easily implement these strategies “by
hand™:

1 °-y" command line option for most executables
1 SprAbskFilter::irreversibleFilterByClass(const char* classes)

Example: 3 input classes (0, 1, and 2) By convention, first class in the

list is treated as background and
> SprXXXApp -y “1,2”7 .. second class as signal. For
(separate class 1 from class 2) symmetric optimization FOM’s, it
> SprXXXApp -y “.,2” .. does not matter; for asymmetric
(separate class 2 from all others) FOM’s, it does.

Ilya Narsky BaBar Meeting, December 2005 38

Multi-class learner

m Reduce multi-class problem to a set of

two-class problems using an indicator

matrix
m For example, a problem with 4 classes:

1
—1

Y ONE-VS-ALL — _1

—1

—1
1
—1
—1

-1

-1
1

-1

1

1
1
1

Y, ONE-VS-ONE —

1
—1
0
0

1
0
—1
0

1

0

0
—1

0
1
—1
0

0

1

0
—1

Allwein, Schapire and Singer, 2000

0

0

1
—1

m Indicator matrix = K*L matrix for K classes
and L binary classifiers

Ilya Narsky

BaBar Meeting, December 2005

39

"

Classification by the multi-class algorithm

m Compute user-defined loss (either
guadratic or exponential) for each row of
the indicator matrix

1e.g., compute average quadratic error

1 L
E, :Z;(Ykl ~ 0 k=1,.,K

1...and assign event X to the class which gives
the minimal quadratic error

Ilya Narsky BaBar Meeting, December 2005 40

|
Multi-class learner in SPR

Ready-to-go executable: SprMultiClassBoostedSplitApp

» SprMultiClassBoostedSplitApp -e 1 -y "0,1,2,3,4" -g 1 -f
multi.spr -n 100 -t gauss4 uniform 2d valid.pat

gauss4 uniform 2d train.pat

Use the one-vs-all training template (-e 1) to separate the 5 classes from each other
and save the trained classifier configuration into multi.spr. Each binary classifier is
boosted binary splits with 100 splits per input dimension. After training is completed,
display average quadratic loss (-g 1) for validation data.

» SprMultiClassBoostedSplitApp -y "0,1,2,3,4" -g 1 -r
multi.spr -o multi.hbook gauss4 uniform 2d valid.pat

Read the classifier configuration from multi.spr and apply it to validation data. Save
validation data and classifier output into multi.hbook. Quadratic loss for each class
will be saved, as well as the overall classification (integer class label).

Multi-class learning algorithm is implemented using boosted splits because
these are very fast and robust. Training boosted decision trees or random
forest requires fine-tuning of the classifier parameters, which can be hardly
done for all binary problems at once without loss of accuracy.

g

Example: B*—-K**vv analysis

Disclaimer: a purely hypothetical and silly example of multi-class separation:

» 2 — signal
-4 - B+B-

5 - BOBObar
* 6 — ccbar

7 —uds

» 8 — tau+tau-

Classified category vs true category for test data

one against all

one against one

|

O
L]

_DI

o s [][]
O[] O O
(1 O

T 5.5

_DI

-

- o« J OO

O[] O O
] O

1.5

1.5 |
Ilya Narsky

1.5
1.

5.5

. .
BaBar Meeting, December 2005

42

Choosing input variables

= Compute correlation between an input variable and the
class label
1 SprExploratoryAnalysisApp
m Decision trees can count decision splits on each input
variable => discard variables with few hits

01 “-i” option of SprAdaBoostDecisionTreeApp and
SprBaggerDecisionTreeApp

1 is useful only if a large fraction of input variables is considered
for each split

= Once you decided that some variables are useless, can
exclude them from the input list

01 “-z" option for most executables
1 SprAbsReader::.chooseAllBut(const set<string>& vars)

Example: for muon PID, the training data are split into bins of momentum and
polar angle, but these two variables are not used for classification:

» SprBaggerDecisionTreeApp -z “p,theta” ..

Ilya Narsky BaBar Meeting, December 2005 43

"
Missing values

= If a certain variable cannot be measured, it is
represented by an unphysical value

[1e.g., measure momentum of a lepton candidate in
each event: 0 GeV < p <5 GeV, if no lepton
candidate, assign -1

1 by convention adopted in SPR, all missing values
should be encoded as values below the physical
range (e.g., -1 but not 10 in the example above)

m Two strategies to deal with missing values:
1 do nothing (recommended choice)

1 replace missing values with medians of marginal
distributions

Ilya Narsky BaBar Meeting, December 2005

" A
Why is it ok to do nothing about

missing values?
m Decision trees are robust and they work equally
well with discrete, continuous and mixed

variables
= Abundance of missing values reduces CPU time

used by decision trees
1 sorting an array takes O(N*log(N))

[0 moving missing values to the beginning of the array
takes O(M), and sorting the rest of the array takes

O((N-M)*log(N-M))
1 for N=M sorting takes O(N) instead of O(N*log(N))
= Adding an extra input variable which is not
measured in most events is (mostly) harmless.

Ilya Narsky BaBar Meeting, December 2005 a5

Application of SPR to physics analysis

m Search for B—KOvy
1 60 input variables
[a significant improvement over rectangular cuts by boosted splits
1 see my presentations at Leptonic AWG meetings
= Muon PID
1 17 input variables

1 a significant improvement over the neural net by random forest
[1 see presentation by Kevin Flood in the PID session

= BO/BObar tagging
1 156 input variables
1 my best attempt is currently at Q=28.9% (random forest)

1 worse than official Q=30% but better than Q=25% which | had in
September

Ilya Narsky BaBar Meeting, December 2005 46

|
Benchmarks

= Against R

190k training set in 4D (electron BO/BObar tagging

data)
SprBaggerDecisionTreeApp: 164.360u 5.170s 3:00.55 93.8%

R randomForest: 708.970u 940.830s 31:13.56 88.0%
1 Q from SPR better by ~10%

= Against m-boost (Byron Roe’s C package)

1 boosted decision tree results from SPR and m-boost
are in very good agreement for 50D data (training set
~50k) with similar tree configurations

1 speed? (under investigation)

Ilya Narsky BaBar Meeting, December 2005 a7

s
What the future holds

= Major interfaces and command-line
options are frozen

m The only anticipated development is
adding a method for automatic input
variable selection (forward selection,
backward elimination)

= The package could benefit from
aggressive use and bug reports

Ilya Narsky BaBar Meeting, December 2005

48

Invitation/solicitation — |

So far, all bugs have been found by me; none reported
by users.

The core of the package is fairly well debugged...

...but flexibility comes with a price — exotic combinations
of options are not tested as thoroughly as others

For example, SprAdaBoostDecisionTreeApp has 24
command-line options. | don’t have manpower to test all
possible combinations.

For example, yesterday | discovered that “-w” option of
the executable reweights events in class 1 instead of
reweighting events in the 2" class specified by the “-y”
input class list. Such bugs are easy to catch and fix.

If you use the package, by all means — try to push it to
the limit. Use all options. Report any glimpse of problem.

Ilya Narsky BaBar Meeting, December 2005 49

Invitation/solicitation — |l

m Planning to submit a NIM paper about the
package

= The more practical examples, the better!

= If you applied one of the advanced classifiers
(boosted decision trees, random forest or multi-
class learner) to your analysis and obtained a
result which is significantly better (210%) than
whatever you had before, feel free to send me
your piece for inclusion in the paper.

m Special thanks to a first serious user of the muilti-
class learning algorithm.

Ilya Narsky BaBar Meeting, December 2005 50

Anti-challenge

m [f you are using a neural net, | bet that |
can improve your FOM (whatever that
might be) by

(l T ZMISSING)' [50 —49 exp(— Dl(—)(?()jj%

X VISSING fraction of missing values in the data
D> 20 dimensionality

m Bet conditions: you provide your data in
ascii format recognized by SPR

Ilya Narsky BaBar Meeting, December 2005 51

