Inclusive Tag-Side Vertex Reconstruction in Partially Reconstructed B decays

-A Progress Report -

11/09/2011 TDBC-BRECO

- Brief Reminder
- Status
- Next Steps

Single Tag - CP asymmetry

$$\mathcal{A}_{l}(\Delta t) = \frac{\mathcal{N}(\overline{B}_{d})(\Delta t) - \mathcal{N}(B_{d})(\Delta t)}{\mathcal{N}(\overline{B}_{d})(\Delta t) + \mathcal{N}(B_{d})(\Delta t)}$$

$$\delta = \frac{1}{2} \mathcal{A}_{ll} = 1 - \left| \frac{q}{p} \right|$$

~
$$\delta(1 - \cos(\Delta m \Delta t) + \frac{\Delta m}{\Gamma} \sin(\Delta m \Delta t))$$

- $\bullet~\delta$ can be measured as the amplitude of the time-dependent asymmetry
- detector asymmetries can be simultaneously measured as a time independent overall bias
- Different w.r.t. double tag approach, where \mathcal{A}_{\parallel} is time-independent

Inclusive CP Asymmetries in Semileptonic Decays of B Mesons Hitoshi Yamamoto hep-ph/9707427v2

Inclusive Vertex Recosntruction

- Event with \mathcal{N}_{good} tracks selected, consider all permutations of \mathcal{N}_{D} "decay" tracks and $\mathcal{N}_{O} = \mathcal{N}_{good} - \mathcal{N}_{D}$ other side tracks, compute a likelihood as:
- $$\begin{split} \log \mathcal{L} &= \log \mathcal{L}(\mathcal{N}_{D} \mid \mathcal{N}_{good}) + \\ &+ \log \mathcal{L}(E_{D} \mid \mathcal{N}_{D}) + \log \mathcal{L}(\cos(\theta_{D,\ell}) \mid \mathcal{N}_{D}) + \log \mathcal{L}(\mathcal{M}_{v,D}^{2} \mid \mathcal{N}_{D}) + \\ &+ \log \mathcal{L}(E_{O} \mid \mathcal{N}_{O}) + \log \mathcal{L}(\cos(\theta_{O,\ell}) \mid \mathcal{N}_{O}) + \log \mathcal{L}(\Pi(Vertex) \mid \mathcal{N}_{O}) + \\ &+ \log \mathcal{L}(\Delta E) + \log \mathcal{L}(\cos(B_{1,}B_{2})) + \log \mathcal{L}(\cos(B, beam)) \end{split}$$
- Choose the combination providing the largest value of ${\cal L}$
- Compute the 2nd B vertex from the "other side" tracks selected this way

Resolution vs true ΔZ

- Resolution and pull much improved wrt cone cut approach
- Also a sízable efficiency gain (~30% for 90° cone)

 $\Delta Z_{reco} - \Delta Z_{true}$

Validation

- PDFs shapes taken from simulation
- Many variables are involved, individual tuning is time expensive
- Difficult to control correlations
- A posteriori validation :
 - Compare ΔZ , $\sigma(\Delta Z)$ signal distributions in Data and MC
 - Smear if necessary the MC to the data

Method

- Fit data Squared-Missing-Mass (M_v^2) distributions in several bins of the selected variable (e.g. DZ), with the sum of :
 - (1) $B_d \rightarrow D^{*} l^+ v_l$ (2) $B_q \rightarrow D^{**} l^+ v_l$ (3) $B_d \rightarrow D^{*-} l^+ v_l X$ other peaking, including CP eigenstates (4) Combinatoric $B_d + B_u$ (5) Continuum
- Float (1), (2), (4). Fíx (5) to off-peak events
- Compare amount of peaking events (1+2+3) to truth-matched MC in each bin

Examples

Fit Result for Events with Fit Result for Events with $-0.004 < \Delta Z < 0.004$

$0.20 < \Delta Z < 0.25$

Squared Missing Mass (GeV²)

Results : Zlepton - ZDecaySide

- ΔZ computed wrt the tracks assigned to the "other side", corresponding to the other B meson
- Input for the \mathcal{A}_{ll} measurement
- Good overall agreement

Recent Developments

- Fít true Δt distributions for MC events selected as data
- Simultaneous fit to τ , Δm_d , and n (events) to true signal data splitted by lepton kind, lepton charge, mixing status (8 samples, 10 param.)

τ 1.53790+-0.00066

 $\Delta m_{d} = 0.48803 + -0.00020$

e+ e- m+ m-	2674125+-1635 2626602+-1621 2355011+-1535 2314104+-1521	UNMIXED
e+	556471+-746	

- e- 547725+-740 m+ 485497+-697
- m- 477249+-691

MIXED

Recent Developments (1)

- Fít true Δt dístributions for MC events selected as data
- Simultaneous fit to τ , Δm_d , and n (events) to true signal data splitted by lepton kind, lepton charge, mixing status (8 samples, 10 param.)

τ	1.53790+-0.00066		Reconstru	iction asymmetries (%):
$\Delta {\rm m}_{\rm d}$	0.48803+-0.00020			5
e+ e- m+	2674125+-1635 2626602+-1621 2355011+-1535	UNMIXED	e unmixed e mixed e all	0.896533 0.0436342 0.792013 0.0955594 0.878514 0.039692
m-	2314104+-1521		mu unmixe	d 0.87612 0.0464871
e+ e-	556471+-746 547725+-740	MIXED	mu mixed mu all	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
m+ m-	485497+-697 477249+-691		lep all	0.875838 0.0289534

Recent Developments (2)

- Fít true Δt distributions for MC events selected as data
- Símultaneous fít to τ , δ , and n (events) to true sígnal data splítted by lepton kind and lepton charge (4 samples, 6 param.)

Reconstruction asymmetries (%):

τ	1.51756+-0.0	00062	
Δm_{d}	0.48800+-0.0	00000	fixed
δ	0.00028+-0.0	00062	
$\Delta\Gamma$	0.00000+-0.	00000	fixed
e+	3230778+-	1798	
e-	3174548+-	1782	
μ+	2840733+-	1686	
11-	2791503+-	1671	

e all	0.877761	0.037217
mu all	0.874077	0.0423274
lep all	0.876091	0.0190036

Status

- Detector effects induce ~ 0.8% asymmetry in $l^+\pi_{-s}^-$ vs $l^-\pi_{+s}^+$ tagging
- $\bullet\,$ Same asymmetry for μ and e , probably due to $\,\pi_{_{\!S}}\,$ reconstruction
- At truth level, it is possible to fit both the CP asymmetry and the individual event rates i.d. the detector asymmetry (at least for $\delta = 0$)

Next Steps

- Prepare MC events with $\delta \neq 0$ (+-0.005, +-0.002, +-0.001)
- Check linearity at truth level
- Fit reconstructed simulated events, including resolution effects
- Add background:
 - peaking B+
 - combinatorial
 - contínuum
- Toy studies
- Data

Conclusion

- Developed a new algorithm to build the "other" vertex in inclusive event
- The method improves sizably wrt the usual cone cut approach:
 - * removes the bias
 - * improves the overall resolution
- A precision similar to fully reconstructed events can be reached
- The method can be in principle implemented with each partially reconstructed sample (even single leptons)
- CP analysis at start do not expect fast progresses ...