

1

Sommario:

- Formalismo delle oscillazioni
- Il caso del charm
- Le misure
 - Oscillazioni di Sapore
 - yCP
 - Analisi di Dalitz
- Interpretazioni e conseguenze

Formalismo (1)

- Mesoni neutri : autostati di sapore (M°)
- Evoluzione temporale: interazioni deboli, che inducono oscillazioni e decadimenti

$$\begin{split} i \frac{\partial}{\partial t} \begin{pmatrix} |M^{\,0}(t)\rangle \\ |\overline{M}^{\,0}(t)\rangle \end{pmatrix} &= \begin{pmatrix} \mathsf{M} - \frac{i}{2} \Gamma \\ \mathbf{X} - \frac{i}{2} \Gamma \end{pmatrix} \begin{pmatrix} |M^{\,0}(t)\rangle \\ |\overline{M}^{\,0}(t)\rangle \end{pmatrix} \\ \\ \text{2x2 hermitian matrices} & \text{Mesons decay!} \end{split}$$

Autostati di massa :

$$|M_{1,2}\rangle = p|M^0\rangle \pm q|\overline{M}^0\rangle$$

• ... si propagano con masse($m_{1,2}$) e larghezze ($\Gamma_{1,2}$) definite

$$M_{1,2}(t)\rangle = e^{-i(m_{1,2}-i\Gamma_{1,2}/2)t} |M_{1,2}(t=0)\rangle$$

Formalismo (2)

 Evoluzione temporale di uno stato prodotto con sapore definito, M°, al tempo t=0 :

$$|M^{0}(t)\rangle = e^{-\bar{\gamma}t/2} \left(\cosh(\Delta\gamma t/2) |M^{0}\rangle - \frac{q}{p} \sinh(\Delta\gamma t/2) |\overline{M}^{0}\rangle \right)$$

• ... dove i termini $\Delta\gamma = (y+ix)\Gamma$ $\bar{\gamma} = (\Gamma_1 + \Gamma_2)/2 - i(m_1 + m_2)$ Comparsa dello stato di sapore opposto, con frequenza $\omega = 2\pi/x$

dipendono dagli osservabili:

<u>TAnello Mancante (pre-Moriond)</u>

D-mixing : teoria

Contributi a "corto-raggio" (quark-like)

Soppressione Cabibbo

Soppressione GIM

 $H \propto \cos^2 \theta_c \sin^2 \theta_c \frac{(m_s^2 - m_d^2)^2}{m_c^2}$ Stati Virtuali: contribuiscono solo a x

Contributi a "lungo-raggio" (hadron-like)

Stati Reali (Comuni): contribuiscono a x e y

$$\Sigma_i \Gamma_i(comuni) \ll \Gamma(tot)$$

Soppressione di fatto

<u>)-mixing: Predizioni ?</u>

- SU(3) esatto : x = y = 0
- Difficile il calcolo delle correzioni a SU(3)
- Effetti maggiori su y ?

x <~ 10⁻³ , y <~ 10⁻²

G. Burdman and I. Shipsey, Ann. Rev. Nucl. and Part. Sci. 53, 431 (2003).

D-mixing: Predizioni 2

- SU(3) esatto : x = y = 0
- Difficile il calcolo delle correzioni a SU(3)
- Effetti maggiori su y ?

x <~ 10⁻³ y <~ 10⁻²

u

Molti esperimenti in passato hanno studiato il fenomeno

- Nessuna evidenza
- Prime evidenze da B-factories : Moriond 2007
 - alta sezione d'urto

$$\sigma(e^+ e^-) \rightarrow c \overline{c} = 1.3 \ nb \quad @ \sqrt{s} \simeq 10.5 \ GeV$$

🤊 alta luminosita'

BABAR:
$$\int L dt \simeq 380 \ fb^{-1}$$
, $\Rightarrow 5 \times 10^8 (D \overline{D})$
Belle: $\int L dt \simeq 540 \ fb^{-1}$, $\Rightarrow 7 \times 10^8 (D \overline{D})$

boost "naturale"

$$\beta \gamma c \tau \simeq 100 \, \mu m$$

Franco Simonetto – INFN & Universita' di Padova

<u>Le Evidenze Sperimentali</u>

Oscillazione di Sapore BABAR

Belle

Autostati di Massa

BABAR

• Belle

Analisi di Dalitz

Belle

BABAR

PRL 97 221803 (2006)

hep-ex/07041000

hep-ex/0703036

 $D^0 \Leftrightarrow D^0$

hep-ex/0703020

PRL 96 151801 (2006)

PRL 91 121801 (2003)

 $D^0/D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$

 $D^0/\overline{D^0} \rightarrow K^- \pi^+ \pi^0$, $K3\pi$

 $D^0/\overline{D^0} \rightarrow K_s \pi^+ \pi^-$

Franco Simonetto — INFN & Universita' di Padova

Oscillazioni $D^0 \Leftrightarrow \overline{D^0}$

- Identifica sapore (D/anti-D) in produzione ($t_o = 0$)
- Identifica sapore (D/anti-D) al decadimento (t)
- Determina x,y dalla frazione (time-dependent) di eventi oscillati:

$$r(t) = \frac{N(D^0(0) \rightarrow \overline{D^0}(t))}{N(D^0(0))}$$

(e complesso coniugato)

Franco Simonetto - INFN & Universita' di Padova

Identificazione di Sapore

• Produzione: D° dal decadimento $D^{*+} \rightarrow \pi^+ D^0$ (e c.c.)

 $D^0 \rightarrow K^- \pi^+ (e \ c.c.)$ Decadimento :

la carica del K identifica il sapore del D⁰

Franco Simonetto - INFN & Universita' di Padova

Complicazioni : DCS

- Decadimenti Doppio Cabibbo Soppressi : falso segnale di oscillazione

<u>Mixed decay:</u>

 Rate confrontabile col segnale
 Nessuna struttura temporale

DCS

- Interferiscono col segnale ③
- 🔹 Introducono una fase forte (ignota) 😂

$$\frac{A_{DCS}}{A_{CF}} = -\sqrt{R_D} e^{-i\delta} \qquad \begin{cases} x' = x\cos\delta + y\sin\delta\\ y' = -x\sin\delta + y\cos\delta \end{cases}$$

misuriamo dei parametri efficaci !

Franco Simonetto - INFN & Universita' di Padova

 $K^+\pi^-$

<u>Tevoluzione temporale</u>

Includendo gli effetti di interferenza e sviluppando per i piccoli valori di x',y' :

$$r(t) = \overline{r}(t) \simeq e^{-\Gamma t} (R_D + \sqrt{R_D} y' \Gamma t + \frac{(x'^2 + y'^2)}{4} \Gamma^2 t^2 + ...)$$

$$DCS \qquad Mix$$

$$R_{D} = \frac{\Gamma(DCS)}{\Gamma(CF)}$$

$$x' = x \cos \delta + y \sin \delta$$
$$y' = -x \sin \delta + y \cos \delta$$

$$x'^2 + y'^2 = x^2 + y^2$$

<u> Ia Misura di BABAR</u>

D^o selection:

* Identified K and π * $p^*(D^0) > 2.5 \text{ GeV/c}$ * $1.81 < m(K\pi) < 1.92 \text{ GeV/c}^2$ Slow π selection: * $p^*(\pi_s) < 0.45 \text{ GeV/c}$ * $p_{\text{lab}}(\pi_s) > 0.1 \text{ GeV/c}$ * $0.14 < \Delta m < 0.16 \text{ GeV/c}^2$ $\Delta m = m(K\pi\pi_s) - m(K\pi)$

Fondi caratterizzati nei dati:

Misreconstructed D^{0} : Partially reco. D^{0} , $D^{0} \rightarrow K^{-} u^{+} v$

 $D^{o} \rightarrow K^{-} \mu^{+} v$

* Double misid $D^{0} \rightarrow K^{-} \pi^{+}$

(WS events only) • Peaks in Δm , not $m(K\pi)$ Random π_s :

\diamond Correct D^{o} , wrong π_{s}

• Peaks in m($K\pi$), not Δ m

Combinatoric: Random tracks

INFN

Franco Simonetto - INFN & Universita' di Padova

Estrazione del Segnale ...

• ... da fit simultaneo M(K π), Δ M (incluse correlazioni)

<u>Misura di t</u>

- D^0, π_s costretti al beam-spot
- П(fit) >0.1 %
- -2<t< 4 ps
- σ(**†**)< 0.5 ps

R.S.: Risoluzione, τ W.S.: R_D,x',y'

hyp: R.S.,W.S. hanno la stessa funzione di risoluzione

Franco Simonetto - INFN & Universita' di Padova

Evidenza dell' Oscillazione

18

Errori Sistematici

Fit e modello:

- Funzione di risoluzione
- PDF e frazioni di segnale e fondi

Selezione

Sensibilita' ai tagli

Par	Fit	Tagli	Totale
R _D	0.59	0.24	0.63
X'2	0.40	0.57	0.70
У'	0.45	0.55	0.71

Errore sistematico espresso come frazione dell'errore statistico

()alidazioni ...

- Misura r = WS/RS in cinque bin di t, da fit a $\Delta M, M(K\pi)$
- Nessuna ipotesi sulla dipendenza temporale di segnale e fondi

0.45

0.4

0.35

0.3

J F N

-2

R_{ws} (%)

 Fit mixing nel campione **Right Sign**

INFN & Universita' di Padova Franco Simonetto -

Conclusioni (parziali)

N F N

 $\ensuremath{\mathfrak{S}}$ x',y' parametri efficaci (fase δ incognita)

Franco Simonetto – INFN & Universita' di Padova

Y_{CP} da Autostati di Massa

- $\Gamma = \frac{1}{2} (\Gamma_1 + \Gamma_2) = (410 \text{ fs})^{-1} \text{ e' un parametro efficace}$
- Se <u>CP conservata</u>, $|D_{1,2} \rangle \equiv |D_{CP+,-} \rangle$
- $\bullet\,$ Evoluzione temporale autostati CP +, CP- regolata da $\Gamma_{\!_1}\,{\rm e}\,\Gamma_{\!_2}$
- 💩 Si misura

$$y_{CP} = \frac{\Gamma \left(K^{+} K^{-} \right)}{\Gamma \left(K^{-} \pi^{+} \right)} - 1 = \frac{\Gamma \left(\pi^{+} \pi^{-} \right)}{\Gamma \left(K^{-} \pi^{+} \right)} - 1 = \frac{\Delta \Gamma}{\Gamma}$$

Franco Simonetto – INFN & Universita' di Padova

540 fb⁻¹ :

J F N

signal 1	10K	1.2M	50K
purity 9	98%	99%	92%

Franco Simonetto - INFN & Universita' di Padova

	y _{CP} (%)
KK	1.25±0.39±0.28
$\pi\pi$	$1.44{\pm}0.57{\pm}0.42$
$KK + \pi\pi$	$1.31{\pm}0.32{\pm}0.25$

Simultaneous $KK/\pi\pi/K\pi$ binned likelihood fit quality of fit: $\chi^2 = 1.084$ (289)

 $\tau(K\pi) = 408.7 \pm 0.6$ fs

24

Separare X, Y: Analisi di Dalitz $D^0/\overline{D^0} \to K_s \pi^0 \pi^0$

Dalitz Plot :

- Solution Structure Str
- Cabibbo Sopressi :

$$D \rightarrow K \quad \pi$$
 , ...
 $D^0 \rightarrow K^{*+} \pi^-$, ...

Autostati di CP (Massa) $D^0 \rightarrow K_S \rho^0$

- Analisi evoluzione temporale sul Dalitz Plot misura simultaneamente
 - Ampiezze CF, CS
 - Fasi forti
 - Parametri di Mixing

<u>Il Metodo</u>

Ampiezza time-dependent sul Dalitz Plot (CP conservata):

$$M(m_{-}^{2}, m_{+}^{2}, t) = A(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) + e_{2}(t)}{2} + A(m_{+}^{2}, m_{-}^{2}) \frac{e_{1}(t) - e_{2}(t)}{2}$$

 $m_{+,-}$ e' definita col tag di D* :

$$m_{\pm} = \begin{cases} m(K_s, \pi^{\pm}) & D^{*+} \to D^0 \pi^+ \\ m(K_s, \pi^{\mp}) & D^{*-} \to \bar{D}^0 \pi^- \end{cases}$$

e_{1,2}(t) contengono la dipendenza da x,y :

$$e_{1,2}(t) = e^{-i(m_{1,2} - i\Gamma_{1,2}/2)t}$$

Belle Moriond 2007

- 534000 eventi
- Purezza ~ 95 %

Mass (GeV)

Dalitz fit

NFN

Resonance	Amplitude	Phase (deg)	Fit fraction
K*(892)=	1.629 ± 0.005	1343 ± 03	0.6227
K2(1430)-	2.12 ± 0.000	-0.9 ± 0.5	0.0724
K2(1430)-	0.87 ± 0.01	-47.3 ± 0.7	0.0123
K*(1410)=	0.65 ± 0.02	111 + 2	0.0048
K*(1680)=	0.60 ± 0.02	147 ± 5	0.0002
K*(892)+	0.152 ± 0.003	-37.5 ± 1.1	0.0054
K*(1430)+	0.541 ± 0.013	91.8 ± 1.5	0.0047
K*(1430)+	0.276 ± 0.010	-106 ± 3	0.0013
K*(1410)+	0.333 ± 0.016	-102 ± 2	0.0013
K*(1680)+	0.73 ± 0.10	103 ± 6	0.0004
o(770)	1 (fixed)	0 (fixed)	0.2111
w(782)	0.0380 ± 0.0006	115.1 ± 0.9	0.0063
fo(980)	0.380 ± 0.002	-147.1 ± 0.9	0.0452
$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162
$f_{2}(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180
o(1450)	0.72 ± 0.02	40.9 ± 1.9	0.0024
() ()	1.387 ± 0.018	-147 ± 1	0.0914
02	0.267 ± 0.009	-157 ± 3	0.0088
NR	2.36 ± 0.05	155 ± 2	0.0615

- Results with this refined model consistent with the analysis performed for the Belle φ₃ measurement, PRD73, 112009 (2006)
- ✤ To test the scalar $\pi\pi$ contributions, K-matrix formalism is also used

$$x = 0.80 \pm 0.29 \pm 0.17$$
 %
 $y = 0.33 \pm 0.24 \pm 0.15$ %

(x=0,y=0) point:

σ syst :
 Modello Dalitz (x),
 Modello e PDF(t) (y)

<u>(P conservata ?</u>

$$|M^{0}(t)\rangle = e^{-\bar{\gamma}t/2} \left(\cosh(\Delta\gamma t/2) |M^{0}\rangle - \frac{q}{p} \sinh(\Delta\gamma t/2) |\overline{M}^{0}\rangle \right)$$
CP violata :

🔹 funzione d'onda

nel decadimento

Conseguenze

$$\Delta = \frac{|q^2| - |p^2|}{|q^2| + |p^2|} \neq 0$$

$$A_f = A(D^0 \to f) \neq A(\overline{D^0} \to \overline{f}) = \overline{A}_{\overline{f}}$$

- diversi parametri per eventi con tag D*+, D*-
- autostati massa ≠ autostati CP:

$$y_{CP} = y \cos \phi + x \Delta \sin \phi \neq y$$

$$\phi = Arg(\frac{q \overline{A}_{f_{CP}}}{p A_{f_{CP}}}) \quad (\simeq 2A^2 \sin^4 \theta_C \eta < 10^{-3} \text{ nel } M.S.)$$

()erifiche

NESSUNA EVIDENZA DI

Franco Simonetto – INFN & Universita' di Padova

Interpretazioni

Analisi (Bayesiana) che include tutte le misure

Parameter	68% prob.	95% prob.
x	$(5.5 \pm 2.2) \cdot 10^{-3}$	[0.0005, 0.0102]
\boldsymbol{y}	$(5.4 \pm 2.0) \cdot 10^{-3}$	[0.0010, 0.0091]
$2\phi_D$	$(0 \pm 22)^{\circ}$	$[-50^{\circ}, 50^{\circ}]$
δ	$(-38 \pm 46)^{\circ}$	$[-130^\circ, 36^\circ]$
A_m	-0.02 ± 0.15	[-0.33, 0.29]
$\Delta m_D ~[{ m ps}^{-1}]$	$(14.5 \pm 5.6) \cdot 10^{-3}$	[0.0027, 0.0256]

- S.M. poco predittivo
- Tuttavia si possono estrarre delle conclusioni (generali) su N.F.
- V.Porretti (Meeting BABAR Italia):

In molti scenari sono attesi notevoli segnali di D-Mixing

FCNC for D > FCNC for K

In words: in order to satisfy the bounds on the down sector, FCNC induced by the CKM must be shifted in the up sector.

This is a general reasoning that applies also to other models that predict large signals in D mixing (variants of technicolor and 2HDM models, some scenarios in extraD, littlest higgs models...)

• Un esempio

... brutte nuove per LHC

Questi diagrammi introducono sensibilita' a squarks e gluini

The measurements constrain squark and gluino masses > 2 TeV

(MSSM con allineamento quark-squark)

> Ciuchini et al. hep-ph/0703294

Conclusioni

Prime evidenze da BABAR e Belle di mixing del charm

Misure attuali vincolano alcuni modelli di NF

no squark-gluini @LHC (R-conserved SUSY with alignment) Estate: nuovi risultati da B-factories

• Dalitz (K
$$3\pi$$
, K_s $\pi\pi$, K⁻ $\pi^+\pi^0$), y_{CP} (BABAR)

Miscellanea

Franco Simonetto – INFN & Universita' di Padova

Il canale semileptonico

Manca un neutrino! (fondi abbondano nel wrong-charge)

D-mixing with Semileptonic decay $D^0 \rightarrow K^- l^+ \nu_l$ No DCS sl. ! $A_f = \bar{A}_{\bar{f}} = 0$ $r(t) = \frac{e^{-t}}{4} (x^2 + y^2) t^2 \left| \frac{q}{p} \right|^2$ Double tag $D^{*+} \rightarrow D^{\bar{0}}\pi^+$, semil. and hadronic (fully rec.) Several hadronic tagging modes ΔM WS events ΔM RS events WS data Entries/3.5 MeV/c 10 12 10 Entries / 3.5 MeV/c BaBar, 344 fb⁻¹ 800 600 400 600 200 400 0.5 0.150.2 0.25 0.3 ΔMer [GeV/c² 200 0.00.15 0.30 0.20 0.25 0.35 0.15 0.2 0.25 0.3 0.35AMst [GeV/c2]

 $-1.3 \times 10^{-3} < R_M < 1.2 \times 10^{-3}$ @ 90% C.L. 35

Franco Simonetto - INFN & Universita' di Padova

 $\Delta M [GeV/c^2]$

Da Ciuchini et al ., citato :

$m_{ ilde{q}}$	$m_{\widetilde{g}}$	$\left(\delta^u_{12} ight)_{LL,RR}$	$\left (\delta^u_{12})_{LR,RL} ight $	$\left \left(\delta^u_{12} ight)_{LL=RR} ight $
350	350	0.032	0.0056	0.0027
500	500	0.048	0.0080	0.0040
1000	1000	0.11	0.019	0.0080
500	1000	0.13	0.014	0.0060
500	350	0.028	0.0080	0.0036

TABLE III: Upper bounds at 95% probability for $|(\delta_{12}^u)_{AB}|$ for various values of squark and gluino masses (in GeV).

It is very interesting that SUSY models with quarksquark alignment generically predict $(\delta_{12}^u)_{LL} \sim 0.2$ [6]. We conclude that, to be phenomenologically viable, they need squark and gluino masses to be above ~ 2 TeV. Therefore, they probably lie beyond the reach of the LHC.

