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Three teachers:

1) Luca Stanco ( )
Particle Physicist (specialized in Neutrinos)
Slides in:

2) Tommaso Dorigo (tommaso.dorigo@pd.infn.it)
Particle Physicist (specialized in Hadron Collider)

3) Denis Bastieri (denis.bastieri@pd.infn.it)
Astro-Particle Physicist (specialized in Gamma Observation)

One oral examination that deals in two parts:
1) A statistical problem chosen by the student between those illustrated in the course:

illustration, critical issues, analysis, results
2) Usual follow up
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Generic Layout (much more inside) :

PDF: Probability Density Function(s)

1. Random Variables, Normal Density; Central Limit Theorem;
2. Cumulative Function and Uniform Distribution;
3. Binomial, Poisson, Cauchy and t-Student Functions.

Basic Elements

Probability and Bayes T
1. Probability laws; Bayes Theorem for Physicists; Ordering; Fundamental Concepts
2. Posterior probabilities; Credibility Intervals.

Likelihood and Estimators —
1. Chi-Squared and Likelihood functions; Methods of ; Basic Concepts (T.D.)
2. Error propagation; Estimators;
3. All on Correlations.

Confidence Intervals and Test of Hypothesis —

1. Intervals of Confidence, and Statistical Tests Sophisticated Applications
2. HO, H1 and p-values; (D.B.)

3. Cramer-Rao Theorem and Lemma of Neyman-Pearson. |

Applications —

1.Feldman & Cousins o
2.Monte Carlo’s methods and Markov chain Applications
3.Kalman Fiiltering
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Premises, Suggestions, Tricks, Caveats...

- Statistics is a touchy, uncomfortable field
- It is fundamental for the contemporary researchers (physicists et al.)
- Itis based on an undefined, circular definition of Probability

(vou will see, | will use quite often the wording “usually”)

- Currently, Probability presents too many Axioms, Postulates and Principles
- Still waiting for a more comprehensive general frame
- Many mistakes in books, articles, internet sites, even recent ones

- Butitis applied, and it works usually well in practically all the fields of human
rational (science, finance, work, production ...)

- Statistics has been developed and it is currently under the trust of Mathematics
and Economy, i.e. it is currently an “abstract-like” science.
Physics view in Statistics is taking-up (especially HEP) and it may help a lot !

- ldentify the question of the problem you are interested to
- Solve the problem underneath, DO NOT try to generalize

- Use the up-to-date tool: your computer (!)
You will NOT understand by reading the slides, but instead following our lessons
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11 February 2016: discovery of the Gravitational Waves
(and confirmation of Black Holes)

YWULVA Viiulll

PRL 116, 061102 (2016) PHYSICAL REVIEW LETTERS 12 FEBRUARY 2016

£

Observation of Gravitational Waves from a Binary Black Hole Merger

B.P. Abbott ef al.”

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10~2!, It matches the waveform
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a
false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater

than 5.16. The source lies at a luminosity distance of 410*1 so Mpc corresponding to a redshift z = 0. 09+0 -
In the source frame, the initial black hole masses are 3613 M, and 297§ M ,, and the final black hole mass is

6274 M, with 3.0702 M ¢? radiated in gravitational waves. All uncertainties define 90% credible intervals.
These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger.

* for16 days of running
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Solution

The probability of a fake event is: (16/365) * (1/203000) = 2.2 * 10~/

a little less thawhich corresponds to 5.7 * 10/
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Observation of Gravitational Waves. Its significance is given as
‘less than 1 event in 203,000 years (over integration of 16 days of observation),
l.e. 5.1 6"

1

= 2161077

Binomial with P = —¢ T
*
365 203000

(i.e. 5.055 ¢ at ONE-SIDE !)

Actually, it follows as example from an exact estimation:

Generic transient search Binary coalescence search

20 38 40 4.40 4.40 20 30 46 5110 >5.10
. 2030 40 4.60 >4.60 5 20 30 405.10 >5.10
e \! mmm Search Result (C3) ol mmm Search Result ]
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Detection statistic n¢
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16 October 2017: discovery of Gravitational Waves
from neutron stars collapse, associated to Light

I8 Selected for a Viewpoint in Physics —
PRL 119, 161101 (2017) PHYSICAL REVIEW LETTERS 20 OCTOBER 2017

S

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B.P. Abbott et al.”

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

On August 17, 2017 at 12:41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave
detectors made their first observation of a binary neutron star inspiral. The signal, GW 170817, was detected
with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per
8.0 x 10* years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in
agreement with masses of known neutron stars. Restricting the component spins to the range inferred in
binary neutron stars, we find the component masses to be in the range 1.17-1.60 M ., with the total mass of

the system 2.74f8"8fM®. The source was localized within a sky region of 28 deg” (90% probability) and

had a luminosity distance of 40"}, Mpc, the closest and most precisely localized gravitational-wave signal
yet. The association with the y-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the
coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a
link between these mergers and short y-ray bursts. Subsequent identification of transient counterparts
across the electromagnetic spectrum in the same location further supports the interpretation of this event as
a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides
insight into astrophysics, dense matter, gravitation, and cosmology.

DOI: 10.1103/PhysRevLett.119.161101

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova 8



PRL 119, 161101 (2017) PHYSICAL REV
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FIG. 4. Two-dimensional posterior distribution for the compo-
nent masses 7, and m, in the rest frame of the source for the low-
spin scenario (|y| < 0.05, blue) and the high-spin scenario
(ly| < 0.89, red). The colored contours enclose 90% of the
probability from the joint posterior probability density function
for m; and m,. The shape of the two dimensional posterior is
determined by a line of constant M and its width is determined
by the uncertainty in M. The widths of the marginal distributions
(shown on axes, dashed lines enclose 90% probability away from
equal mass of 1.36M ) is strongly affected by the choice of spin
priors. The result using the low-spin prior (blue) is consistent with
the masses of all known binary neutron star systems. 9




4 July 2012: discovery of the "Higgs”

CMS :
é Characterization of excess near 125 GeV
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Standard Model for Cosmology

Confirmed by LSS and
CMBR fluctuations

(l?llllll||ll|l|\w Illll\

' No Big Bang Spergel et al. (2003)

DARK
75% ENERGY

NORMAL
0,
4% MATTER

Supernovae ] 75 + 2% Dark Energy
25 + 3% Matter
0.5% Bright Stars

Matter (25%):
20% Dark Matter
4.4% Baryons
0.3% vs

We do not

| understand 96%
of the universe!
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The current major problem in
Fundamental Physics

Cosmology Concordance Model:
Q\+Q\+Q. =, +Q 1 (2k=0, inflation)

Legend: SN-la: Supernove of type la
CMB: Cosmics Microwave Background
BAOQO: Baryon Acoustic Oscillation
Qy: density of the mass of the universe
Q,: density of vacuum (energy
Q.. free parameter

Anomalies drive
scientific discoveries !

£,
http://arxiv4.library.cornell.edu/pdf/1004.1711v1
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Some suggestions for References

By physicists, for physicists
G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.
‘ R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley, 1989;
F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006;
» W.T. Eadie et al., North-Holland, 1971 (1st ed., hard to find);
S.Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York, 1998.
L.Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986.

S ,. Statistics | ol STATISTICAL
Stazisr'ical Mcthods. in Yap Scatistical ,ﬂ ,2 s = DATA
zl'i:(z:::lemal Ph'):s:cs al Scien lf A N A [Y S,[ S
™
,j;'/ Classical
r I,' Inference
dr

L. Wasserman, “All of Statistics. A Concise Course in Statistical Inference”
Springer, ed. 2004
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Data
- 10 step

ﬂnﬂly5|s "~ (may we assume that you know

THE GATHERING, DISPLAY, AND what an histogram is ?)
SUMMARY OF DATA;

Probability

THE LAWS OF CHANCE, IN
AND OUT OF THE CASINC;

[ -
Statistical
[
inference e

THE SCIENCE OF DRAWING ~ (all about what you will learned)
STATISTICAL CONCLUSIONS
FROM SPECIFIC DATA, USING A

| KNOWLEDGE OF PROBABILITY. |

J1

. 20 step
(correct definitons of what you can
think already to know)

I
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e.g. dice’s roll

Given P(5) = 1/6 what is the
P(20 5’s out of 100 trials) ?

similarly...

Given 20 5’s out of 100,
what is P(5) ?

Parameter Determination

If unbiassed, what is

Observe 65 evens in 100 trials,
P(n evens out of 100 trials) ?

is it unbiassed ?

Goodness of fit

Oris P(even) = 2/3 ?
Hypothesis testing (and Inference)

THEORY-> DATA

DATA-> THEORY
Prediction moves forwards ———i——>

&+ |nference moves backwards

Final question: how to check you have learnt the maximum from your measurement and in a

correct unbiassed way ? = error evaluation
L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova
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Solution: binomial distribution for p=1/6 and 100 trials.
at 20 the probability is about 6.5%

0.10

0.08
0.06

0.04

0.02 o

10 20 30 40

Done with Mathematica:
In[..] DiscretePlot[PDF[BinomialDistribution[100, 0.16667], x], {x, 0., 40.}]

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova
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Note that binomial is very similar to a gaussian with
n=100%(1/6)=16.667 and c>=100%(1/6)*(5/6)=13.8889

0.10-

0.08

0.06 -
0.04 -

0.02

10 20 30 40

In[..] Plot[PDF[NormalDistribution[16.6667, 3.727], x], {x, 0., 40}]

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova
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Cx=22%35

What is the meaning of:

X ?
22 7?
57?

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova
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Theory and Real-Life are put together by introducing the quantity:

PD F : Probability Density Function(s)

P(A)= [ pd.f. (X)sdx

Where P(A) is the “probability” of the “event” A belonging to the space of the events Q.
Then it should also be:

P(Q)=fg pd.f. (¥)edx=1

And one can assume (“axiomize”) P(A)>0 for every event A, i.e. p.d.f. (x)>0 for every x

And also the axiom that P(AUB)=P(A)+ P(B) if A and B are disjoints, i.,e. ANB =0

In reality ALL can be a PDF:

- just ask you the right question,

- find the right random variable (i.e. the space (),
- and find out the corresponding PDF
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A word on the concept of RANDOM VARIABLE:

The possible outcome of an experiment/measurement/question,
which involve one or more random processes.

The outcome is called “event”.

They are usually “elementary” (opposite to “composite”) events
Very often they are “independent” events (in probabilistic sense)

Very relevant:

Any combination of random variables is itself a random variable.
Therefore, the PDF is itself a random variable, with its own PDF !
The combinations are usually called composite events.

The correct evaluation of the PDF allows you the to estimate
the “sensitivity” of your measurement (i.e. estimate the error)
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Before to elucidate further the concept of PDF, probability, inference etc.
we will concentrate on basic technicalities of the PDF.

For a long time researchers have just tried out to evaluate the characteristics
of the PDF.
1)Make a (set of) measurement(s)

Construct a frequency plot

Extract the most “probable” value
|dentify the latter with the “result’ of the measurement

2)
3)
4)
5)Extract an indication of the “'dispersion” of the frequency plot
6)ldentify the latter with the “error”

7)Add the “error’ to the “result’

AAA: the PDF is the probability density of the single random variable.
Usually several measurements of the same quantity are made.
Each of them owns its own PDF.
Usually one assume that the measurements are INDEPENDENT and
done in the same way, i.e. the single PDF is always the same.
Then, the frequency plot describes this unique PDF.
The final “error” has to be given by considering ALL the information collected.
E.G. “error’/An
WHY THIS HAS TO BE CLEARLY UNDERSTOOD ? see later...
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DATA DESCRIPTION

Usually, for the frequency plot, one find histograms like:

Heig hts of Black Cherry Trees

S _ »
— g
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N
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Histogram of Monte Carlo Simulation Results
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DATA DESCRIPTION ="result”

—_—

(arithmetic) mean Z

pe
Zx Z Z;
i1=1 OR _’7—

n 1=1

(sometime, wrongly indicated as x = [ )

Going to interval binning of measure:
(histogram in L bins):

and for the “continuous” case:

x= E(x)= f_jx-f(x)dx

Expectation value of
the function f(x)

median X, 1 f _:ned f(x)dx = f :w f(x)dx

The median is NOT sensible to OUTLIERS, i.e. to the extreme values,
not characteristic of the majority of data

mode = maximum of the distribution

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova
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DATA DESCRIPTION ="error”

The question is: how much “dispersed” is the frequency plot around the “result” value ?

First possibility: identify some percentile range, such that f+bf(x)dx
the integral in [a,b] is equal to the percentile -a

Example: identify the INTERQUARTILE range, IOR, [ P F(x)dx =05
by finding the median and the two sub-median —

[ f@de= [ fdx Sxpeg
[of@de=["fede 5, - IQR=xXyX,

fjmed J(x)dx = fbmf(x)dx Sx,

In practice, you have two find the 4 regions where the integrated PDF is equal to 0.25
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QI distribution of human population :

| | | | — al
70 90 100 110 130

Usually a relative QI is computed by considering the median at 100
IQR=110-90= 20

100 30 145
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The nice plot of the previous slide introduces us to the GAUSSIAN distribution.

n
I = 1 Z =
Usually one compute the VARIANCE 62 77— (xi _,z)z

from the Mean Square Deviation
t=1

n
= 437 ! =
and the STANDARD DEVIATION & = 14§72 = -ﬁ:_’ (23,--'25)2

1=1

IF s — o in the Gaussian PDF: G(x;,u,a) =

Passing to the continuous and going from “deviations” z=x-x; to the
probability density for the random variable x:

o’=E(x*)-E*(x)= fj:zz - f(2)dz

Expectation value of the 2°  moment of the function f(x)

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova
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LS

It is useful to compute the “distance” of a single measurement from the mean
as the number of standard deviations from the mean

f(x; W,0)

o/2 o/2

(x-W/oc

Figure 32.4: Illustration of a symmetric 90% confidence interval
(unshaded) for a measurement of a single quantity with Gaussian
errors. Integrated probabilities, defined by a, are as shown.

Table 32.1: Area of the tails o outside &4 from the mean of a

Gaussian distribution.

« %) 1o )
03173 ( lo 0.2 1.28¢
4.55 x1072 G 0.1
2.7 x1073 30 0.05
6.3x10~° 4o 0.01 .
5.7x10~7 50 0.001 3.29¢0
2.0x1079 60 104 3.89¢0

When reporting physical results

one usually talk of
“CONFIDENCE INTERVALS”
- at 1 sigma

- at 90% of CONFIDENCE LEVEL

- at 95% of C.L.
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DATA DESCRIPTION ="error”

IQR
Q1 Q3
Q1 —-15 = IQR Q3 + 15 = IQR
| |
Median
—-4’10 ——'30 —-20 -—io 0'0 1'0 20 3'0 dla
—-2.6980 —0.67450c 0.67450 2.698¢0

£

" 24.65% ! 50%  24.65% T

— —

—

—-40 -30 —-20 1o Oc 1o 20 3o 4o
- P,
__—"15.73% 68.27% ) SIS i e
—-40 —-30 —-20 -10 Ooc 1o 20 30 40

Modern approach:

*Define a Confidence Limit, C.L. (how much probability you like to integrate)
*Find a “centralized” Confidence Interval, C.l., such that P in [a,b] = C.L.
*Describe the result as, e.g. X« in in [a,b], where X5, COrresponds to P,
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Some useful characteristics of NORMAL DISTRIBUTION

FWHM: Full Width Half Maximum

Curva normale standardizzata

04

A

FV}H

0.3

densita
0

0.1

00
|

T ] A & . !
3 -2 -1 0 1 2
1—68.27%>I

95.45%

e 99.73%

Amplitude of the interval along the
points x; € X, of abscissa u+ 0+/21n2

It comes out:

P(-1<Z <1)=6827%
P(-2 <2 =2)=9545%
P(-3<Z=3)=9373%

Very useful for evaluations “de visu” !
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WHY is the GAUSSIAN so relevant as PDF ?

=>» Theorem of the CENTRAL LIMIT
(De Moivre in 1733, dead and resurrected by Laplace in 1812,
dead and resurrected in the first years of XX century)

Suppose you make several (n) measurements, each one described by a unique

unknown PDF, f(x)
Suppose that for the PDF mean p and variance o? exist
(this it is not always true, e.g. the Breit-Wigner mean and variance do not exist)

Compute the cumulative PDF of the n measurements, g(x)
(this correspond to the multiplicative convolution of n PDFs, see later)

Then, for n “sufficiently” large, g(x) IS the GAUSSIAN PDF
with mean p and variance o4/n !

Demonstration is tedious, but it is a matter of fact that observations fully support
the result of the theorem: by accumulating more and more measurements ANY
kind of cumulative PDF will behave more and more as a Gaussian.
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32



The Central Limit Theorem is the unofficial sovereign of probability theory.
However it created/creates a lot of confusion.

Anybody thinks that it can be applied everywhere anytime.
Even more relevant the fact that one usually compute the “error” as the standard

deviation, i.e. its “estimator” from the Mean Square Deviation, whatever be the original
PDF.

This is badly wrong !

Almost nobody pay attention to the following:

The CLT may induce researchers to assume as “error” the standard deviation
of the Gaussian density, i.e. the 68% of C.L.

Let us repeat:

the error is usually given by the range that corresponds to the 68% of the PDF
of the random variable.

However it is usually NOT true that for a PDF its Variance provide a range of 68% !
This (un)property is called (un)coverage.

Very tricky: the convolution of n PDF corresponds to a Gaussian, but if you interested
to estimate the error of the single PDF, its o does not corresponds to 68%
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DATA DESCRIPTION ="other semi-qualitative descriptions of the PDF”

In general, for almost every PDF the expectation values of order n can be computed.
They are called, the moments a.,,:

a, = E[x”] = f+°°x” - f(x)dx
and the central moments: m, = E [(x -_ ,u)"] where g:mean

Then, two more (obsolete) quantities are defined:

m
SKEW: y,=— (possible asymmetry of the PDF)

3

m, _
4

KURTOSIS: y, = 3  (wideness of the tails with respect to the Gaussian

that has y,=0 by construction)

v, > 0 : leptokurtic distribution (wider tail than G, e.qg. Cauchy/Breit-Wigner)

v, < 0 : platykurtic distribution (more centralized that G, e.g. box PDF))
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DATA DESCRIPTION ="parametrized” PDF

Often it happens that the set of measurements is taken as function of some parameters.
Think e.g. to take a measurement every day and its results varies linearly with the day.

20

18

16

day

14

12

AN
AN
AN

10 —

AN
AN
AN

—
1

4

2;/

0 1 I l llllllllllllllll lll l

11 [ 1

11 1 11 1 11 1 1 l 11 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
measurement
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The PDF of each-day measurement is
assumed to be the same.

However one is interested in evaluating
the dependence law, f(day).

We, logically, introduce some unknown
parameter in the PDF.

In the illustrated example: u(day)

We take a PRINCIPLE, e.g. the

Least Square Errors, or the
“Maximum Probability” (MLE):

One introduce a new form of “Probability”:
the LIKELIHOOD

Define an “ESTIMATOR?, i.e. a function
of the measurements, to extract f(x)
and compute the “estimate”

Usually, dispersion may not be unique
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The UNIFORM distribution (Loreti 8)

(f(x)=0

per x < a e per x > b;

Lf(x)=m=cost. pera < x < b.

0 per x < a;

F(x) = j fihat = {X-@

s per a < x < b;

Cumulative function

1 per x > b.

E(x) = a-;b
) b — )2 oz—E(xz)—Ez(x)—T x’ gy a+br_ 1 .XS‘b_(a+b)2
Var(x) = ( 1261) - __wb—a 2 " b-a 3 4

1b'-a’ (a+b’ 1

2 2 2 2
e = |4 s ab+ ) =3( +2ab+ b))
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For a physicist it is important O = A

= 0.3 A
to keep memory that: A /1 2

When we deal with n measurements, each with uniform distribution,
We have to use the variance so defined. Example:

A | ]
. . fit
1
1 —
. . ]
__a precision . + .
1
error, whose : L1 i ,
) P ERENED . E——— i o e o
value be A : i
—— l _I_ _I—
] 1 |
1 1 1
]
>

If the & is mistakened the fit result will be wrong, i.e. its final error estimation
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Demonstration:
- random uniform generation in the interval of width 1

- compute the distribution of residuals with respect to O, (z-2.)°
- consider 100 sets of samplings of “measurements”.. o= N—ll
400 D 1
350 E ;'_LIII—L.—FL_,:|_|-II|_|—’I|J_,I Entries 10000
= Mean —=0.1G90E-02
3090 ;— RMS G 2893
250 E UDFLW 0.000
OVFLW £.000
200 ?—
150 E—
100 ?—
50 |
g B PRI ST S N T SR R PR T TR SR AN SN SO SR S AT ST S S
=1 -0.5 0 0.5 1 1.5 2
rnd
16 F ID 2
14 B i Entries 100 '
- plot of sigmas Mean 0.2889 | € .
12 RMS 0.1312E-0D1
10 F LDFLW 2.000
C OVFLW £.000
8
5
s E
2 |
O C 1 1 1 l 1 1 11 l L1 1 1 ln 11 1 1 1 1 l 1 1 1 1 [ 1 1 1 l 1 11
.1 0.15 0.2 0.25 0.3 0.35 C.4 0.45 0.5

scarti
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Obviously the sampling of measurements is not large.
If e.g. we consider 20 measurements the distribution of the sigmas is :

90 F D 1

80 Entries 2000

-0 E Mean —0.2833E-02
3 RMS 0 2885

60 UDFLW 0.000

s0 E OVFLW 0.000

40 E

30 F

20 F

10 F

O : 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 L I L 1 L L I L 1 1 1
— —-0.5 0 0.5 1 1.5 2

rnd

i D 2

10 il Entries 100
. Mean 0.2871

8 | RMS 0.2774E—D1
i LDFLW 0.000

6 - OVFLW 0.000

4 i

2 -

O l-l L 1 L l 1 L 1 L IlTII L 1 l L 1 L 1 l 1 1 1 I—lll L 1 l 1 L 1 L l 1 L 1 L
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

gcarti

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova



Moreover, there is another critical issue. Compute:

Tf(x)wlx

l.e. the probability between + ——

A
J12

+AN12 1 )
One obtain f —edx=—"_=0578=0.683
~AN12 A \/E

The probability to measure the true value in =c is NOT equal
to 68%, ie. what one usually assume !
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Very important is the concept of CUMULATIVE Distribution FUNCTION

(the probabiliy that x < a)
a
= / f(z)dx .
—0OC

For the NORMAL DISTRIBUTION the solution is:

if we define the function ERF: erf(a /
f

T I T I T I T I T I T T I L} T I T T I T T I T T I T L}
1.0 RERS
B 02202, m— /
2_
I . 022 1.0, m— / K ‘/

[=0 |
H=0
081 = 2250, m—
i ﬁ:?’z, o—gs — / /// ]
—~ o8l /
F(z;0,1) = % [1 + erf(x/\/i)] 35; 06'_ / _
@i 04

0.0 _r'/ M—
1 I 1 1 I 1 1 I 1 1 I
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Every CUMULATIVE function F(x) owns a UNIFORM distribution !

(Loreti 8.1.2)

F(x) = ff(x') * dx'

Be y = F(x) the random variable, we want to compute the PDF g(y) of y.
For random variables the following rule holds for monotonic shapes:

f(x)edx=g(y)edysg(y) |y (x)edx

Then g(y) = 1 since y’(x)=f(x).

a(y)

< ¥, with PDF

The probability of events in dx, i.e. f(x,)dx
must be equal to the probability in dy, i.e g(y,)dy

for yo=y(xo)

Xo X, with PDF = f(x)
L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova
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Usefull for simulations™ (Monte Carlo)

One can usually generate pseudo-random* numbers
With uniform distribution in the range [0,1]. And few more functions.

Suppose that a f(x) correspond to a physical phenomenum,

Then one can compute its sampling by

generating uniformily y in [0,1] and

by computing the inverse of the cumulative

Function F(x): X = F_l(y)
y =F(x) —dy = f(x)dx

— [dy = [ f(x)dx

do 1
example: d_ oC —
X X

logx =logx, + (logx1 —logxo)' 5

*they own a finite period

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova

When inversion cannot be made:

FIGURA 8b - La scelta di un numero a caso con distribuzione prefissata me-
diante tecniche numeriche (la densita di probabilita é la stessa della figu-
ra 4d); la funzione maggiorante ¢ una spezzata (superiormente) o la retta
v = 0.9 (inferiormente).

1

0.5

0.5

0
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The BINOMIAL distribution it answers the probabilistic question: is that true or not ?

STARTING WITH A BERNOULLI TRIAL, WITH PROBABILITY OF SULLESS p, LET'S

O
Be rnOUIll BUILD A NEW RANDOM VARIABLE BY REPEATING THE BERNOULLI TRIAL.

trial,

PROVIDED IT HAS THESE CRITICAL
PROPERTIES:

1) THE RESULT OF EACH TRIAL
MAY-BE-EITHER @o-
AEALLRE)

2) THE PROBABILITY p OF
SVCCESS 15 THE SAME IN
EVERY TRIAL.

3) THE TRIALS ARE INDEPENDENT:

THE OUTCOME OF ONE TRIAL HAS
NO INFLUENCE ON LATER OUTLOMES.

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova

The
binomial
random
variable

X 15 TUHE NUMBER OF
SUCCESSES IN n REPEATED
BERNOULL! TRIALS WITH
PROBABILITY p OF SUCLESS.
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WHEN 2 = .5, THE BINOMIAL'S
PROBABILITY DISTRIBUTION 15
PERFECTLY SYMMETRICAL. FOR
6 COIN FLIPS, FOR INSTANCE, IT'

£=#UEADS 0 1 2 3 4 5 "
r-b (B @)% @ O @6 G @)

WITH THIS
HISTOGRAM:

[ . au T A T v T

(o) 2 3 4 s €

—

Expected number of successes = 2nP_ = Np,
as is obvious
Variance of no. of successes = Np(1-p)
Variance ~ Np, for p~0
~ N(1-p) for p~1
NOT Np in general. NOT n +Vn
e.g. 100 trials, 99 successes, NOT 99 + 10

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova

" THE MEAN AND VARIANCE OF THE

BINOMIAL DISTRIBUTION ARE

M = np
o* = np(l-p)

NOTE THAT THE MEAN MAKES
INTUITIVE SENSE: IN 17 BERNOULL!
TRIALS, THE EXPECTED NUMBER OF
SUCLESSES SHOULD BE np. THE
VARIANCE FOLLOWS FROM THE
FAZT THAT THE BINOMIAL 15 THE

SUM OF 71 INDEPENDENT BERNOULLI
TRIALS OF VARIANC @

dPr
dx

E(x2)=fx2° *dx=p
0.

and then o2(x) = E(x2)-E2(x)=pq

Note: 1-p = q
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Interesting example in Physics: the RADIACTIVE DECAYS

(Loreti 8.4.1)

Be A, the constant probability of an unstable nucleus to decay into a time interval ¢,
then, given N nuclei, the probability to get a certain nb of decays in the time tis
given by the binomial distribution (the average nb of decays in N nuclei is NAy)

Hypothesis: A, & f then A, =A-¢
Then, the nb of nuclei N changesas dN =—-N- A- dt

—A -1
Therefore, the nb of not decayed nuclei is: N(t) = Nt=0' e = Noe 4

The probabilistic question is: given t how many times do | get M(t) decay ?
= BINOMIAL

A more interesting, slightly different, probabilistic question is:
given the time t how many M(t) nuclei decay? 5 pOISSONIAN

Repeat to yourself the two questions the needed number of times
to rightly understand which are the two different random variables
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Average number of decays at timet: N,—-N(¢)= N, (1 - e_%)

N,

X

—1
Binomial attime t: P(x;t) = p* (1 — p)NO_x with p=1-e Z

Example, °°Co (amu=59.9338222), (half-life=1925.20+0.25 day), source of 1 gr.
For t=180 d, it holds

18012/ p(t =1 d)=3.6x10*
p=1l-e 19252 = 0.06275169 M=3.6x10'8

5=1.9x10°
1

And N, = 6.02214086-10* =100.479840-10%
59.9338222

Maximum P is for
M =0.06275169 #100.479840-10% = 6.305281*10%

With a dispersion of

0 =,0.062752-(1-0.062752)-100.479-10* =2.4%10" << 5M
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AAA use of significant digits damu :1ppb
ON , :1ppb
SN, ? SN, 2 Samu . 6d : 4 ppm (1min overt)
= + —-v< PP ) 5hy 1 3)(10_4
hl"

2 2 [ 2 2]
op \ (mz) S (d-11212) (W:(d 1n2) ((S_d) +(@)
I-p hl hl hl _ d hl |

~ (6.5% *].3 % 1()‘4)2 ~ (S.Sppm)2
sM\> (8p\ (oN.)
EIRCRCI R
M P N,
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The Poisson distribution it answers the probabilistic question: how many ? *

Prob of n independent events occurring in time t when rate is r (constant)
e.g. events in the single bin of an histogram and NOT the radioactive decay fort~ t

P.=e(rt)"/n! =e*un! (u=rt)

<n>=rt=pu (No surprise!)

G, =L “n +=n” (note: 0 = 0 has no meaning, 1 = 1 is
wrong)

* if the sample is limited the answer is provided by the binomial

Limit of Binomial (N>, p=>0, Np—>u constant, i.e. Poisson)
u—>o0: Poisson—> Gaussian, with mean =
Important for y? correct computation (i.e. the correctness of the error estimation)

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova
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Interlude

The discrete convolution formula:
-be x with its f(x) and y with g(y) two independent discrete random variables =0

-define the new z=x+y random variable
-what is the PDF of z, h(z)?

hz)=Y f(x) gz-x)

As a corollary, if x; and x, are Poissonian random variables with u, and p,, then
X4 + X, is Poissonian with p=p4 + 5

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova
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Foisson

The actual logical transition goes from Binomial to Poissonian and then

to Gaussian.....

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova
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Considering the example of ¢°Co:

a=N, p=100.480-10%-0.062752 = 6.305*10>

with dispersion:

o =Ja =0.062752-100.479-10% =2.511%10"

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova
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Simulation of a Poisson process:

Test the number of car-crashed per week in a fixed town, for a total of 30 weeks.
The number is distributed as a Poisson function, since:

1)It depends of At (and At is “small compared to 30 weeks)

2)It does not depend on what happened before and what will happen after

Suppose the average number of car-crashes per week is a=2. Then

0.3
21X C
€ 2 0.25

x! 0.2 [

P(x;t)= Ideal nb of accidents per week

0.15 [

0.1

0.05 [
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How the distribution actually looks for a set of 30 measures ?

To simulate that, we first compute the cumulative function

0.8

0.6

0.4

0.2

IIIIIIIIIIIIIIIIIIIIII

ﬂ 1 I | | 1 I 1 | | I 1 1 | I | 1 1 I | | 1 I 1 1 | I 1 1 1 I |
2 4 b 8 10 12 14 16

Then, we extract random numbers from the uniform distribution [0,1]
(the only way we know to generate pseudo-randoms)

To each extracted x into [0,1] we evaluate the corresponding n
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Hera are examples of 30 observations:

10

8

6

4 F

2

u :I 1 1 1 1 1 1 1 I 1 1 1 1 I
1] 5 10 15

DOLSSOR=-SErre Lo to

15 [

10

s |

u—rllllllllllllll
1] 5 10 15

10 [

5

u —I_ 1 1 1 I
1] 15

DOLSSOR=-SErre oo
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H 1 |
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H ; I
0 15
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QUESTION: does this simulation follow a Poisson distribution ?

0.2
0.175
0.15
0.125
0.1
0.075
0.05
0.025

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII TTTT

= Test of Hypothesis

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova
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Using the y2: P(o;t) = o =e
& (n-p,x))  (6-30-0.135)
X2= ( [ plz( )) =( ) +
x=0 of 30-0.135

Then compute the probability of the y2 for 15 degrees of freedom:
v?=29139.4 and P(y?,15)=0.

Instead, the simulated sets give: WHY IS SO LARGE ??
v?=11.38 and P(¢?4,15)=0.725 Prob at x=12 is 7-106

v*=4.67 and P(x2,15)=0.994
v*=9.53 and P(%?,15)=0.848

approximate because the PDF of each point is NOT a Gaussian
(the errors are estimated only with approximation)

Another possibility: make a fit leaving free p and computing P(y?,14)
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A very good application (very relevant for Physics)

We study the amount N, of protons in a time t. No decay is observed.
What is the lower limit we can quote on the mean-life of the proton, t,

with a probability of 95% ?

Averaged number of decays

expected in the time-range t x = Nj (l — e‘-?) ~ Ny
from the binomial:

The_ probability to pbsewe 0 events P(0) = oV o

is given by the Poissonian: = 0 e~ = ¢€

What we have to compute, assuming that the proton be instable, is the

minimum value the proton livetime owns such that the probability be at least of 95%

not to observe anything. This happens when:

P(0)=0.95

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova

(Loreti 8.5.1)
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PO) = e* ~ eM* > 095

t
—No— = In0.95
T
T > — h% —— 1 2 20 * Detector largeness™ time range of data taking
- 95

Best limit from SK (Super-Kamiokande): 50,000 m3 di acqua

Table 1. Proton decay search detectors. Water Cherenkov detectors (Kamiokande, IMB-3, and Super-Kamiokande) and iron
tracking detectors (Fréjus and Soudan 2) are listed. Partial lifetime limits have been set at 90% confidence level.

detectors fiducial mass [kt] exposure [kt-yr] limiton p —e*n® [10%'yrs] limiton p — VK" [10*'yrs)
Kamiokande 1.04 3.76 26 (2) 10 (2)
IMB-3 33 7.6 54.0 (3)° 15.1(3)

Super-Kamiokande 225 522
33 67 (5
Fréjus 0.6 1.58 7.0(6)

1.3 1.5(7)
Soudan 2 0.77 3.56 43 (8)

SK recent result : 5.4*1033 (90% C.L.) with 0.1 megaton-year (Mt - year)
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Why is so interesting?
Test of Grand Unified Theories (GUT)

0.1

0.08 Behavior of Running Coupling Constants

0.07 -

0.08

0.0

0.03

Coupling Constant

0.02

T

AtGUT scale

0.01 I I

Coupling Constants Mest

10° 10'¢
Energy Scale (GeV)

ay isthe U(1)y coupling constant: c;(Mz) = g

ag isthe SU(2); coupling constant: ap(Mz) =

ag isthe SU(3), coupling constant: :*‘(LZ)

l—SiniawiMzs

as(Mz) — as(MZ)

4

The present limit from SK excludes the most semplified “versions” of GUTs....
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Two entanglements and a different point-of-view:

Existence of BACKGROUND events !
And, moreover, convolution with the estimated errors ...

Computation of the POISSON PDF starting from the number of events
effectively observed:

P(background) = P(n)

(see later the concept of p-value)

L. Stanco, Stat.An.Dati, Dottorato 2022/23 - Padova

61



http://www.pit.physik.uni-tuebingen.de/grabmayr/workshop/talks/gomez-statistics.pdf

Poisson statistics

N ~5 forT,)) ~10* y

. ] _ 17.5% of the experiments will
015} . . ]
_ . Po(n; 11) = u' pu observe 5 events
n.
G om0l . 17.5% of the experiments will
2 ' observe 4 events
s | . |
el . '. 0.7% of the experiments will
' ’ observe O events
000}" | | . | T e e
0 2 4 6 8 10 12 14

Different identical experiments running for the
same total exposure will observe different

number of events
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The dowser example

3 pipes conducting water randomly at once, a professed
dowser has to predict the right pipe. 12 trials are foreseen.
The statistician affirms that the candidate has to be right at
least 9 times to be declared an effective dowser

Otto Edler von Graeve in 1913

12
P(x:12) = ( . )(1/3)X(2/3)12-x

0,25 23.8%
i 21.2% . n=12, p=1/3
20 N 19.1% mean=12*p=4

: o=N12*p*(1-p)=1.63
BUT on 1000 candidates 1% [ 12 7%
4 will randomly predict " 11.1%
at least 9 times ! 10 | Dowser...
NOTE: Error / E |
fluctuation on 4! s L 4.6% 4.8%

h.8% 15%03/ 0.0049 0-0092%

0 F i L 1 l 1 1 L I L 1 1 l 1 L I 0 0 q5% 1 1 l
\ 0 2 4 6 8 10 12
Poisson S

0.8% 18.1% 63.2%  Binomicd8-1%
o s93%  822% 934% 90T 3,
| >
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http://www.pit.physik.uni-tuebingen.de/grabmayr/workshop/talks/gomez-statistics.pdf

Poisson statistics

N ~5 forT,)) ~10* y

. ] _ 17.5% of the experiments will
015} . . ]
_ . Po(n; 11) = u' pu observe 5 events
n.
G om0l . 17.5% of the experiments will
2 ' observe 4 events
s | . |
el . '. 0.7% of the experiments will
' ’ observe O events
000}" | | . | T e e
0 2 4 6 8 10 12 14

Different identical experiments running for the
same total exposure will observe different

number of events
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SIMULATION

We estimate that about 4 people over 1000 be able to give the right prediction
at least 9 times.

The “significance” of the SINGLE PERSON is 3 &

Actually the single bin of the Binomial distribution will follow Poissonian fluctuations.
(forgetting the constraint on the total nb. of “events”)

Moreover the distribution of the sum over the last 4 bins will also be a Poissonian.
(sum of Poissonians follows a Poissonian p.d.f.)

We simulate 1000 candidates making 1000 random extraction between 0 and 1:

0.8%  5.4% 18.1% 39.3% . 63.2%

Each extraction will simulate a trial corresponding to a specific result (1,2,3... 12)

Each set of 1000 candidates can be taken as ONE EXPERIMENT
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Make 100 experiments: here is the distribution of the winning people
(right prediction at least 9 times over 12)

25 | ID h51
. B Entries 100
20 * Mean 3.600
- RMS 1.887
15 F : - Expected value
: of the mean: 3.855...
10 *
: *
5 = *
* * [
0 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 [ 1 ’Ik * 1 1 1 I
0 2 4 6 8 10 12

>

Number of candidates over 1000 with
at least 9 right answers

Po(n; ) = ‘u—e"“

n!
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Not so good description... Let us try 100 experiments, each with 100,000 candidates

: D 55

6 ] Envies 100
- Mean 387.4

5 F ]’ I RMS 20.8¢

4 F

. 3 Distribution of nb. of people guessing
- J rightly at least 9 times in samples of

2 | —| H 100,000 candidates each

1

0: IHIH..I.H.I...I H ” | P

300 320 340 360 380 400 420 440 460 480 500

The Poissonian becomes actually a Gaussian-like and therefore
the true p.d.f. is ... the t-Student

Oppicson = V385.59 =19.64 = o,

Gauss
100
= Q, X

Guass = 1984
100 -2

Ot —Student
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The Cauchy distribution it answers the probabilistic question: what is the

(also known in Particle Physics probability distribution of a resonant phenomenon ?
as the Breit-Wigner )

1 1 x 1 1 x -6
f(x;0,d) = N | Fex0,a) = J ftyat = ++ Larctan (—)
md 1+ (xd;e) e 2 d
E(Xi) goes fo oo, for anin 1 R
04 http://lepewwg.web.cern.ch/LEPEWWG/1/physrep.pdf
| %1 2v
| = . Z0 gauge boson
: £, ALEPH |
| 30
03 | | o) | DELPHI //\ LINESHAPE
| L3 / \ as measured
| | OPAL at LEP-CERN
%2 F :# average measurements ~ 1992-1 994
error bars increased
[ by factor 10
10
0.1
0 R T
Lo 86 88 90 92 94
1 1 | L 1 i : : 1 | 1 . I 1 E G V
0-10 -8 l -6 -4 -2 0 2 4 6 8 10 cm[ ¢ ]
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The t-Student distribution it answers the probabilistic question: what is the
probability distribution of a finite set of measurements,
each one following the Gaussian distribution ?

The practical problem, solved by William Gosset in 1908, is to correctly estimate
the dispersion, i.e. the VVariance, from the histogram of a Gaussian-like distribution

From a set of n measurements compute its mean x and its standard deviation, s.
Then, define the random variable t (residuals):

X

= STANDARD NORMAL
Se(X)

b, LARGER SAMPLE

t, SMALLER
/ SAMPLE

Se(z) = %W
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31.4.5. Student’s t distribution : (PDG)

Suppose that z and z1,..., Zn are independent and Gaussian distributed with mean 0

and variance 1. We then define , _ _
(minor approximation on n: degrees of freedom)

n
) T
z=) z; and {= . (31.29)
; ¢ vV2/n «—— reduced y?2

The variable z thus follows a x?(n) distribution. Then t is distributed according to
Student’s t distribution with n degrees of freedom, f(¢;n)

The Student’s ¢ distribution resembles a Gaussian with wide tails. As n — oo, the
distribution approaches a Gaussian. If n = 1, it is a Cauchy or Breit—-Wigner distribution.
The mean is finite only for n > 1 and the variance is finite only for n > 2, so the central
limit theorem is not applicable to sums of random variables following the £ distribution
forn =1 or 2.

t-Student distribution with N degrees of freedom

TJ.
f(t;N) = > N=1 with| t =

(1+%) :

(Tn normalization constant)

N
V&I‘(t) — m

— e
e
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Other distributions

Log-Normal, to work out the field x>0

(and the product of large nb of random variables,
e.g. electrons in a calorimetry)

Landau, to work out the energy loss

(with x=(A-A,)/&) where A is the energy loss,
andA,, &depend on actual case and the material)

Negative Binomial

(probability of x successes before k failures )

1 —— L (inx-u)

o

f(x)= 1 [ e sin(wu) du
T 0

N2
» o (x;=x)

. _(k+x-D1! ,
f(xak’p)_ x'(k—l)' p q
n/2—1_-—z/2

flzmn) =2 ° ;

2n/2T(n/2)

Chi Squared, X = p;
i=1 i

"\ AAA
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BACKUP SLIDES
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Example: compatibility of the intial OPERA result (11 September 2011)

and the previous measurement by MINOS about the velocity of the neutrinos

oPERA O =60.8x6.9 (stat.) =7.4 (sys.) ns

at 68% C'.L.

minos O =126 x£32 (stat.) = 64 (sys.) ns at 68% C.L.
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Earlier arrival after 730 km with respect to the time-of-light

ot = (60.7 £ 6.9 (stat.) = 7.4 (sys.)) ns.

Expected value : 0 nsec *
Measured value (meeam): 60.7 nsec

2 2
Error (mean squared): \/Gm +0,, =10.1 nsec

“Distance” in term of “SIGMA'S™. [0.0-60.7|/10.1 =6.0 ¢

* ns: nanoseconds: 10° sec
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Delay of arrival time after 734 km with respect to the time-of-light

68% C.L.

5 —

—126 =

- 32 (Stat.) -

- 64 (sys.) ns

Error (mean squared): \/02 +0°_ =T2nsec

“Distance” in term of “SIGMA’S”;
|0.0-126]/ 72=1.8c

Conclusion of MINOS:
Result is compatible with v, ¢tino = Ve

If we go from sigmas to the probabilities:
AAA one-side/two-side issue or choice
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o/2

From “sigma’s” to probabiliy

f(x; L,0)

o/2

Figure 32.4: Illustration of a symmetric 90% confidence interval
(unshaded) for a measurement of a single quantity with Gaussian
errors. Integrated probabilities, defined by «, are as shown.
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24 February 1987: observation of supernova explosion type 1| SN1987A
3 hours before 23 neutrinos in 13 sec were observed
Vaeutrino = Ve While photons get out with some delay, when the shock
wave reaches the star surface.

Whether OPERA result were true the RATIO would have been:

56, = (248 + 0.28,0 + 0.3045e) x 107°  (OPERA), where ¢, = (v, — ¢)/c.

As SN1987A is far away 168,000 light-years neutrinos had to arrive
42+0.5x0.5 years before

= limit on the ratio between v, in0 € Ve : 10 (with an error around 1 order of magnitude)

Clearly incompatible, an energy dependence has to be introduced:

Mean energy of OPERA neutrinos: 17 GeV
Mean energy of supernova neutrinos: from 7.5 to 39 MeV

Or a flavor dependence...
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8 months later...

m All experiments consistent with no measurable
deviation from the speed of light for neutrinos:

m Borexino: &t =2.7 1.2 (stat) = 3(sys) ns

ot =5.1 + 1.1(stat) £ 5.5(sys) ns
ot = 2.9 + 0.6(stat) = 3(sys) ns
ot =1.6 = 1.1(stat) [+ 6.1, -3.7](sys) ns

T <Dd>=27+12+3ns
- lv-cl

62 events
F ——<3.310°(90%c.l.) ]
Borexino

4°d\o"d '
& '

40 -30 -20_ -10 0 _ 10 20 30 40
o =TOF(v) - TOF(c)

= ICARUS:
= LVD:
= OPERA:
. Entries @
75 Mean g suli
L RMS 5
B . > 10
e RPC using :
4 Trigger Boards 8F
3F (systematics to 8
= be reduced soon) ob’
- OPERA .
B 2
0 :‘ P - | T - PO T Lo B
150  -100  -50 0 50 100 [ 1]50
6.5 ns
ot = (—5.1 +0.6 (stat.)’S; (sys.)) ns
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THE VARIANCE OF THE UM OF RANDOM VARIABLES HAS A SIMPLE FORM IN
THE SPECIAL CASE WHEN THE VARIABLES X AND Y ARE INDEPENDENT. THE
TECHNICAL PEFINITION OF INDEPENDENCE 15 BASED ON THE PROBABILITY
PROPERTY P(A AND B) = P(A)P(B).. BUT FOR U%, INPEPENDENCE JUST MEANS

THAT X AND Y ARE GENERATED BY INDEPENDENT MECHANISMS, SUCH AS
FLIPS OF A COIN, ROLLS OF A DIE, ETC.

WHEN X AND Y ARE INDEPENDENT,
THEIR VARIANCES ADD:

g X+Y) = g X)+a(Y)  (while the two PDFs multiply themselves I)
E[in] = ZE[Xi]
i=1 i=1

AND, WHEN THE X; ARE ALL INDEPENDENT,

It is intuitive but we need a bit of
o ( E X. ) E o (X ) Mat_h.er_natics and some new
definitions.
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Discrete variable

Function generatrice

Functions GENERATRICE and CHARACTERISTIC (Loreti, pag. 72)

k-th Moment Ax = E(x¥) = J x* f(x)dx

M,(t) = E(e"¥) = J ooe"‘f(x)dx

o0

(characteristic)

(with e*=>e')

For a discrete variable it holds: Mx(t)=2.p,- s

and we use the McLaurin expansion of the exponential: " =

&
Then, in case all the Moments exist to any order ok
with respect the origin (x=0) Mx(t)=EHlk
d"M (1)

Finally, it follows: =A,

dt*

t=0
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We can extend the result to more than two variables:

Theorem: linear combinations of random variables, all following a Normal distribution,
and all statistically independent, follow also a Normal distribution

Be N normal variables, x, (k=1, ..., N), with their own p, and o, if we consider
the new random variable

N
y= Eakxk
k=1

By using the CHARACTERISTIC function it is easy to demonstrate the
y owns Normal PDF with

K= i Ak Uk o° = 1:21 ay’ oy l.e pdf(y) = def(xl)

k=1

widely used theorem in DATA ANALYSIS.
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From the previous theorem it follows the well known method of AVERAGED MEAN

Have N normal measurements, x, (k=1, ..., N), all statistically independent,
affected by random noise assumed gaussian distributed, the density probability of
the N observations is given by

(! )
o 2m

i=1

where x* is the UNKNOWN true x and, a priori, each measurement owns its o;,
computed e.g. via m.s.d.

The Likelihood functon is:

. 452
2\ o;
L(x,.x,,...Xy Ix)=1_[ e

where x is now a parameter !
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Let us compute the MAX of the Likelihood as function of variable x

z
-
()
m||~—
I
N
=]
~
Il
M M =
—~~
=
=2
T
+
N
M=
=]
S
+
)
2z,
=
ﬁ
—

L1 0p/2m i-1 v 91
/ N X — Xi 2
flx) = le( - )
df N x =\ 1 ( Noq N xz\
a=22( Oi U'i=2\x. o2 ;} df Y x
i=1 i=1 =1 —~ - 2| Kx - L =0
d? f N 1 dx i=10'2
ax? = 22gz2 >0 .
= con K=2.3
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For random independent processes it holds:
pdf ()= | pdf (x)
i

It follows for normal PDF :

N N

2 _ 2 0 2

H=Zakuk O'—Zako'k
k=1 k=1

and the method of the weighted average (with a=1/(c\*Z1/63).

In case of a unique PDF, it holds the theorem of Central Limit for the cumulative PDF.

NOTE: take care of
- elementary and not-elementary events
- single and multiple PDFs
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