Probability in 4 historical steps:

1)CLASSICAL PROBABILITY: Pascal, Fermat et al., around 1650,

to support gamblers and games of dice/playing cards,

“symmetry of different events”

- no generalization to continuous case, possible multiple incoherent definitions -

2)AXIOMATICS PROBABILITY: Kolmogorov, 1950
“axioms and formal theory”
- N0 meaning about the actual values of probability -

3)FREQUENTIST PROBABILITY: von Mises et al, 1957
“limit to infinity of ratio between preferred cases and the whole set of cases”
- applicable only to observed data -

4)BAYESIAN PROBABILITY: 2" half XX century (around latest 40 years, or
afterwards de Finetti unsubstantial essay in 1974),

“Subjective probability based on Bayes theorem’

- prior to be chosen -

Stat.An.Dati Dottorato 2022/23 - Padova



By applying the rules (axioms by Kolmogorov):

For any element A of the space Q of events: P(A) =0 VA

For the whole space Q of mutually exclusive events: P(Q) =]

If the events A and B are disjoint: P(A U B) = P(A) + P(B)

It follows that: P(not A)=1-P(A)
And the following two operations apply:
sum= P(AUB)=P(A)+P(B)- P(ANB)

“PRODUCT" (conditional probability):
P(ANB)=P(A|B)* P(B)

and then, INDEPENDENT events : P(AM B) = P(A)* P(B)
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The concept of “probability” is quite old

How to get “meat”

www.shutterstock.com - 113424166

without being killed ?

WHICH “KIND” of PROBABILITY
were WE APPLYING ?

wwwwwwwwwwwwwwwwwwwwwwwwwwwww
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What is the probability to “find meat and escape to big killers”
whether | would take some kind of actions instead of others ?

| kKnow how to evaluate a certain probability Py
(how many pards did not die by taking the action A)

Pa(survival; action A)

HOWEVER, that DOES NOT answer the question. | am really interested to evaluate
the probability of a certain action to let me survive !
l.e. Pg(action A; survival) i.e. | have to decide whether to take action A or not

Similar questions:

- | know the probability to die whether | smoke, but what is the probability that | smoke
whether | am dying ? (a smokers, finally, supposes not to die !)

- | know what is the probability | win to lottery whether it is perfectly run, but what is

the probability the lottery is unbiassed whether | win ?
- | can evaluate the probability that | own a soul whether God exists (San Tommaso),

but what is the probability that God exists whether | own a soul ?

non sense ? Perhaps yes, for some questions, but Bayes Theorem gives you an answer !
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All we discussed till know, in previous lessons, is the DIRECT PROBABILITY.
However, Thomas Bayes, during his life (1701-1761) discovered the
INVERSE PROBABILITY.

He never published it, which instead was released in 1763.

For about 2 centuries (200 years !) the theorem was “forgot” and
it was considered “non-sense”.

After all, we are all, individually speaking, thinking in terms of INVERSE PROBABILITY

| am not interested to the probability that in the past 5 days it was mild and sunny...
| am interested to the probability that tomorrow be mild and sunny, to go to the beach

| am not interested to the average number of students that will pass exam,
| am interested to the probability to pass the exam myself

| am not interested to the probability that Data supports Dark Matter Hypothesis,
| am interested to the probability that Dark Matter exists
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Just for joking (but terrifically true!)

(rom Lous Lyons (Oxford,
P (pregnant ; female) ~ 3%
but

P (female ; pregnant) >>>3%
Theory = male or female

Data = pregnant or not pregnant

P (Data;Theory) % P (Theory;Data)
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http://indico.cern.ch/conferenceDisplay.py?confId=a063350

More seriously:

Once a bridge is fallen the justice has to evaluate the probability
P(engineer’s mistake | bridge fallen)

and it may not evaluate the probability
P(bridge fallen | engineer’s mistake)

(the latter is a judiciary pursuable mistake in the judicial system!)

Remind also the attempts of some scientific eminent academics to argue against
the sentence about the I'Aquila earthquake, which convicted the scientific advisory
board of Protezione Civile...
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REDUCTIO AD ABSURDUM PROOF

SUPPOSE | play to a perfect roulette: RED & BLACK
(consider a flat distribution in [0., 1.]

IF | count 100 times the RED, ie. | found 100 events in the in region [0., 0.5],
how do | gamble for the 101 roll ?7?

Q = N W e U W

IIIIII]HIJHII|JI-|—I‘|II|H|TI llllllllllllllllllllllll

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Since the probability does not depend of the previous results, in the next 100 counts

| expect a uniform distribution in [0.,1.]

However, | suspect that (almost) everybody would instead expect a distribution packed
up in [0.5, 1.]

Stat.An.Dati Dottorato 2022/23 - Padova



Actually, in 200 counts | would find a distribution like that:

: | l i.e. a non-uniform PDF !

Q = N W e U N

ol

1

CLASSICAL PROBABILITY IS NOT ABLE TO SOLVE THE PROBLEM !
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The problem lays in the definition of Probability:

PDF (data | physics law)

Instead | am trying to compute:

PDF (physics law | data)

Bayes ...

Stat.An.Dati Dottorato 2022/23 - Padova
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(from Kyle Cranmer, NYU, CERN Academic Training, Feb 2-5, 2009,
Bayes Theorem )

Bayes’ theorem relates the conditional and
marginal probabilities of events A & B
P(B|A) P(A)

P(B)

= P(A) is the prior probability or marginal probability of A. It is "prior" in the sense
that it does not take into account any information about B.

= P(AIB) is the conditional probability of A, given B. It is also called the posterior
probability because it is derived from or depends upon the specified value of B. £

= P(BIA) is the conditional probability of B given A.
= P(B) is the prior or marginal probability of B, and acts as a normalizing constant

P(A|B) =

Derivation from conditional probabilities

To derive the theorem, we start from the definition of conditional probability. The probability of event A given event B is

P(AN B)
D( i mp—
P(AIB) = —p 5
Equivalently, the probability of event B given event A is
P(AN B)
) . R
P(B|A) = =53

Rearranging and combining these two equations, we find
P(A|B) P(B) = P(AN B) = P(B|A) P(A).
This lemma is sometimes called the product rule for probabilities. Dividing both sides by P(B), providing that it is non-zero, we obtain Bayes' theorem:
P(ANB) P(B|A)P(A)

PAIB) = —p@B) =~ P(B)
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http://indico.cern.ch/conferenceDisplay.py?confId=48425

... in pictures (from Bob Cousins)

P, Conditional P, and Derivation of Bayes’ Theorem

in Pictures

o) = O PE) = &

Whole space ] ]

¢
P(ANnB)= i

P(A) x P(BIA) = ‘ ; = ‘i = P(AnB)
P(B) x P(AIB) = ; : = ‘i = P(ANB)

Bob Cousins, CMS, 2008 = P(A|B) =P(B|A) x P(A) /| P(B)
Stat.An.Dati Dottorato 2022/23 -
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It is true that we are able to deal only with DATA applied to functions/theories.
However, things become more understandable when theory depends of parameters
that we may want to extract.

Actually, physicists were used to apply the method of evaluating theoretical
parameters, and even adding an estimated error !

That is totally wrong.

Bayesianism versus Frequentism

“Bayesians address the question everyone is
iInterested in, by using assumptions no-one

believes (or obvious)”

“Frequentists use impeccable logic to deal
with an issue of no interest to anyone”

(P.G.Hamer cited by Kyle Cranmer)
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Bayesian VS Frequentist (inference, but also statistics, people, approach,
idea, opinion, bias, superstition...)

Statistical Inference (“learning”): process of using DATA

to infer the DISTRIBUTION that generated the data.

How we interpret PROBABILITY
Frequentist: probability can be interpreted as FREQUENCY:
2=n/N

where N stands for successes and Nas the total number of trials

Bayesian: probability can be interpreted as LACK of KNOWLEDGE,
from the Bayes theorem:

PH|D) =2(D|H) * n(H) / 2(D)

Posterior / \

where H stands for hypothesis and D for data

Prior normalization

Likelihood
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Bayes Theorem applied to Physics

A B ¢ D A: what is the probability that
P(6]X) = P(X|0) * n(0) / Integral a certain model is described
by DATA (posterior) ?

0: parameter (Physics Model) B: how mych is likely .’rha‘r DATA
X: DATA describes a certain model ?

C: prior (information/limits about
the physics model)

D: normalization
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The PRIOR problem

Physicists prefer the UNIFORM prior, which however owns two drawbacks:

1) To be finite, orfn(x)-dx=1, the range has to be defined
2) ltis not invariant for parameter transformation

Of course, both the limits can be partially overcome:

1) Use the denominator to normalize
2) Make the statistical analysis with the ultimate parameter

Another good possibility is to use as PRIOR the whole previous collected information
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A non-controversial use of the Bayes theorem occurs sometime...

|dentify a subset of events by applying certain conditions/algorithms, e.g.

1. Person sickness estimation via medical checks
2. b-quarks estimation via b-tagging algorithm
3. Physics students via question form

| Background rejection versus Signal efficiency |

IMVA

c 1
L)
§0.% ..............................................................................................................................
0.9 PP J— ssenpesassassssssasgasesssssssssseigansiiiinnes T ! TR —p—
g 0'85 ............................................... - - 2 ..- "
o i :
u 0.8 : .......................... | EEEEENEENR.. SN \ .’ .................
30.75 E_ ....... _T_ leellh0.0dD ............................................................ \ ..... T
= —— PDERS |
07 E_ ........... , ..... Cuts ............................................................. \ 3
0-65 E.... .................... . Rule;it.. _.. ............ \. ......
E o HMatrix : ;i (i i N
08— BDT
0.55 ;.._ ....... leethOd' ................................................................................
05:llJlAlLllAlAlljlAlllLAlllLAlllAJlllAlLllAlLllA
-0 01 02 03 04 05 06 07 08 09 1
Signal efficiency
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In any context one usually comes out
with the following pattern:
PURITY vs EFFICIENCY

Perform “measurement” and get:
P(data|signal)=efficiency for signal
P(data|bck)=eff. for background

Extract P(signalldata) from Bayes,
but one needs P(signal) !
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P(A) = .001
PBlA) = .99

P(BINOT A) = .02

AND WE ASK
P(AIB) = WHAT?

(ONE PATIENT IN 1000 HAS THE DISEASE)

(PROBABILITY OF A POSITIVE TEST,
GIVEN INFECTION, 15 .99)

(PROBABILITY OF A FALSE POSITIVE, GIVEN
NO INFECTION, 15 .02)

(PROBABILITY OF HAVING THE DISEASE,
GIVEN A POSITIVE TEST)

We need to know P(A) !

Then

P(AIB) =

P(A)P(BIA)

and P(A|B)=0.0472
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P(A)P(BIA)+P(NOT A)P(BINOT A)
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CAN BE EXPRESSED A%

P(A and B) | - _P(A and B) _ P(AIB)
P{A and B)+P{NOT A and B) P(B)
A NOT A
B A AND B NOT A AND B

NOT B| A AND NOT B NOT A AND NOT B

LET'S FIND THE PROBABILITIES OF EACH EVENT IN THE TABLE:

A NOT A SUM
B P(A AND B) P(NOT A AND B) P(8)
NOT B| P(A AND NOT B) P(NOT A AND NOT B) | P(NOT B)
P(A) P(NOT A) 1

THE PROBABILITIES IN THE MARGINS ARE FOUND BY SUMMING ACROS%% ROWS
AND DOWN COLUMNS.
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P(A AND B) = P(BIAP(A) = (.99)(.001) = .00099
P(NOT A AND B) = P(BINOT A)P(NOT A) = (.02)(.999) = .01998

A NOT A 5UM
B 00099 01998 02097
NOT B | P(A AND NOT B) P(NOT A AND NOT B) | P(NOT B8)
001 999 1

WE FIND THE REMAINING PROBABILITIES BY SUBTRALTING IN THE COLUMNS, THEN
ADDING ACRO%% THE ROWS.
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THE FINAL TABLE 1%

A NOT A
B 00099 01998 02097 P(B)
NOT B 00001 97902 97903 P(NOT B)
001 999 1
P(A) P(NOT A)
FROM WHICH WE DIRECTLY PERIVE
P(A AND B) .00099
P(AlB) = - = 0472
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02097

21



Bayes against Frequentism: be G(0,1) the theory, and suppose 50 measurements

R ID Fi
10 — Entries 50
ﬁm Q.F250
8 5 F.0006
6 |
4 l
2 l
0 L. | | |
-3 -2 -1 0 1 3
ID Fy
10 — Entries 50
Medn Q. 1280
8 5 F.000
S / -] [
14 - / \
2 _,_,-//
0 ———i-—"_'_lﬂ_ﬁf L1 L1 | | | H_TH_H
-3 -2 -1 0 1
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”fo’} THEORY
o=1

Xmeq=0.1280 %= 0.151
sgm=1.066

W=x=0.3696 =+ 0.165
5'=cr=1.1689

+2=0.852 ( 7.668/(12-3) )
Pr(42)=Pr(7.668:9)=1-0.568

The weighted mean
is only slightly better
of the fitted one

X,10q=0.3679 =+ 0.1586
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Suppose that we already know that -1<u<1

Apply Bayes  P(u';x,)=G(x;u',0") m(u')

with (u)=uniform in [-1,1]

X,104=0.0970 =+ 0.0985

B ID 2
10 [ Entries 23 sgm=0.566
C Mean . 99TE-OF
8 — & o059
6 -
¢ This is the PDF of y, i.e. the
o [ inverse-probability,
it cannot be constructed via
B 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1 1 1 1 " LY ngm
0 . 1 0 s " , direct—probability densities
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Back to the problematic use of the Bayes theorem...

In 1966 Jeffreys introduced the “objective” prior, by taking into account

the Fisher’ information:
in average the amount of “information” from a measurement is given by

the second derivative of the Likelihood.
(alnL)2
00

9’ lnL]
* the “expectation value” is over PDF(x;6)

*

=F

I1(6)=-FE
©) [ 00’

Demonstration:
JnL)\"|
|5 )1
E{a (lnzL)}=f J (&(lnL)). .
90 0\ 96

1(aL\ d°L
[ H%) I 5
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Surely it holds:

J(InL)’

TL =1

Stat.An.Dati Dottorato 2022/23 - Padova

1 JL

L 00

)- =%fL=o
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The Jeffreys’ prior has been defined to prevent any subjective choice,
i.e. to be constant in the Fisher Information, without adding more information
(i.e. it is supposed to be “uninformative”):

0 InL
7,0)=\10) = |E|-—
00
Then for the Normal distribution:
L goorne L1 1 g x12/202 > —@-x)/0" —

o~2m o\2x
1 1
—-—-— | f(x)dx =, |— —1/0
o’ f \ o
For the Poisson distribution and 0=p: 7,=1/\n

It is invariant under re-parameterization !
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However, carefulness has to be taken. Think all the time what you are doing.

-Jeffreys’ prior misbehaves for multidimensional parameter

-It depends heavily on the Likelihood, i.e. on the chosen 6 parameter and data set
-It violates the Likelihood principle (“all the information is contained in the Likelihood,
I.e. the function obtained by applying the data to the PDF”)

since the prior does not depend on the data

-More relevant: it may constraint too much your analysis

(see next example)

Stat.An.Dati Dottorato 2022/23 - Padova
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CONFIDENCE INTERVALS.........cc,

(L. Demortier in Terascale Stat. School)

What Are Interval Estimates?

Suppose that we make an observation X = z;, from a distribution f(z | &), where
14 is a parameter of interest, and that we wish to make a statement about the
location of the true value of p, based on our observation z,;s. One possibility is to
calculate a point estimate [ of u, for example via the maximum-likelihood method:

A = argmax f(Zobs | ).

Although such a point estimate has its uses, it comes with no measure of how
confident we can be that the true value of u equals /.

Bayesianism and Frequentism both address this problem by constructing an interval
of u values believed to contain the true value with some confidence. However, the
interval construction method and the meaning of the associated confidence level
are very different in the two paradigms:

e Frequentists build an interval [y, uy] whose boundaries p; and p, are random
variables that depend on X in such a way that if the measurement is repeated
many times, a fraction v of the produced intervals will cover the true u; the
fraction « is called the confidence)level or coverage of the interval construction.

e Bayesians construct the posterior probability density of 1 and choose two values
w1 and po such that the integrated posterior probability between them equals a
desired level «y, called(credibility or Bayesian confidence level of the interval.
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Confidence Intervals (frequentist)

A 1-a confidence interval for a parameter 0 is an interval C,=(a,b)
where a=a(Xy,..., X,,) and b=b(X,,...,X,) are functions of DATA such that

?4(0 € C,) 2 1-a, for all BEB.

In words (a,b) traps 6 with probability 1-a.
1-a is called the coverage of the confidence interval (normally choose a:=0.05).

NOTE: 0 is fixed and C,, is random !

Therefore a confidence interval is NOT a probability statement about 6.

if | repeat the experiment over and over
(or | take different DATA SAMPLES),
the intervals will contain the true parameter 95% of the time,
id est 95% of the intervals will trap the true parameter value.
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Confidence Intervals (Bayesian)

Bayesians can make statements like:

The probability that 6 is in C,,, given the data, is 95%.

Bayesians make inferences about 0 (fixed parameter) by producing

a probability distribution for 6.
Confidence Intervals can be extracted from these distributions

Given n observations, x4,...X,, and the parameter(model) 0, Likelihood is defined as

L,©0)=]]f(x:0

and the posterior distribution is (up to a normalization factor): f(O;x,) o L(O)x f(O)
Let C=(a,b) the interval estimate. a and b are such that ¢ . R . _
(a.b) I r6:x,)d0= [ f(6:x,)d0=ar2

Therefore P(OEC;x,)= fbf(H;xn)dH =1-oa and Cis a 1-a posterior interval.

However these Bayesian intervals refer to degree-of-belief
probabilities. It is NOT true that:
the Bayesian intervals will trap the true parameter 95% of the time!

Credibility Intervals (Bayesian)
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Frequentist Intervals: the Neyman Construction (1)

J. Neyman, Philos. Trans. R. Soc. London 767, 333, 1937
Step 1: Make a graph of the parameter i versus the data X, and plot the density

distribution of X for each value of p.

B2

Note: u continous
x discrete.

That creates

Inconsitencies

at the boundery.
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Frequentist Intervals: the Neyman Construction (2)

Step 2: For each value of pu, select an interval of X values that has a fixed
integrated probability, for example 68%.

)
P(z, <x<:1:2;0)=1—a=/ f(z;0) dz
Ty
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Frequentist Intervals: the Neyman Construction (3)

Step 3: Connect the interval boundaries across u values.

Swat.Arn.van vouvratlo cvuces2s - Fauova
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Frequentist Intervals: the Neyman Construction (4)

Step 4: Drop the “scaffolding” and use the resulting confidence belt to construct

an interval [u1, uo] for the true value of u every time you make an observation z,ps
of X.

Stat.An.Dati Dottorato 2022/23 - Padova
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Frequentist Intervals: the Neyman Construction (5)

Why does this work?

Suppose p* is the true value of p. Then P(z; < X < 25| 1*) = 68%.

Furthermore, for every X € [z1, 3], the reported p-interval will contain p*.
Therefore, the probability of covering p* is 68%.

comes...

Stat.An.Dati Dottorato 2022/23 - Padova
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No such mental and technical gymnastic needed for Bayesian intervals:

» Construct the Posterior probability, i.e. the PDF of the parameter
* Choose the C.L.
« Extract the C.I. by your “preferred” rule

Stat.An.Dati Dottorato 2022/23 - Padova
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2 A
F=gvxB=ma___ - M RN —
centripeta R D III L,l \\ R B
’l l\\\ \\
’/l \\\\ \\
mv = p = gBR P o \l‘l\
L=+D"+x’ Lt __ £
’ 2sin(@) 2 x/L
D’ +x’ D’ +x’
= R=——, p=03qgB———
2X 2X

Depending of the sign of the charged particle, x can assume either positive or negative
Values. Dispersion on x is constant and it depends of the kind of measurement.

Typical values: gq=|1|, B=1.4 Tesla, D=50 cm, x €[-4,4] cm, 6x=1 cm (Normal distribution)
In reality also the error due to Multiple Scattering is present (field B in material)
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A uniform distribution is simulated for charged particles in [-4, 4] cm
And the distribution of residuals of momenta p is computed.

iD o8

Entfles 10000
PIT2ED3
0. E-Of

U= |

160
140
120
100
80
60
40
20

0 llllllllIllllllIllllllllllllIllllIllllIllllllll

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

rryrrryrrryrrryrrryprrryrrryrrTgT
IR R R LN R R R

Xx-gen

For each generated value of x the corresponding momentum is computed :

p(true)=f(x-random in [-4,4]) p(measured)=p=f(x-random in [-4,4]+6Xgyss)
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Distribution of the (true) momenta generated:

1000

llllllllulullllllll

iD &3
Enwies 10000
Mean DINSEOI
RMS 3.140

-5

Large momenta of negative charge,
small x <0

0

ploue)

5

10 = ” GeV

Large momenta of positive charge,
small x =0

Ip| min for |x| = 0.04 m
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Distribution of the “measured” momenta,
i.e. including the Gaussian error of the measure
on the “measurement” of the position x of the trace

800 [ 64

E 10000
700 £ 0.276TEO
so0 E 5.189
500 E
00 [
300 £
200 £
100
0 :l 1 1 1 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 L1

20 -15 -10 -5 0 5 10 15

- GeV
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Distribution of residuals:

The distribution is NOT a Gaussian !
ID 61

Entries 10000
Mean 0.2164EO!
RMS 2.338

800
700
600
500
400
300
200
100

0

lllllllllllllllllllIlllllllllllllllllllllll

-10 -8 -6 -4 -2 0 2 4 6 8 10 GeV

And actually the Theorem of Central Limit cannot be applied
(as p o 1/x and dp o Sx/x?)

Note: the curve corresponds to a Gaussian fit with free mean, variance and normalization
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in semilogaritmic scale...

2 -p(oue)

However if the distribution of residuals 1/p is considered:

102 D 62
F GAUSSIAN ! Enwies 10000
N Mean 0.3080E-02
B RMS 0.71954

102

10 3

1
:l | I — l | I l | I - l | I l | I l 1 11 l | I l 1 1 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

1/p - p(tue)
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If B is mistaken by +10%

(BIAS) then we obtain:

-\

|
N
(=]
I
8 T

-15

-10 -5 0

P (con Blas) vsp

5

10

15

20

700
600
500
400
300
200
100
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Entries

DIR37TED2

69
10000

9.442
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-20 -15
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With a Bias of 10% on the Magnetic Field:

250 %
] 5088
200 [ 0.2433E-02
. 0.1920
150 |-
100
50 [
0 I-l L1 I L1 e lIlIlllIlllIllll
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8
1/p - Hip(oue>0)
250 [ 67
- 5088
- 0.3688E-01
200 - 0.1762
150 [
100
50 |
U C lIlIlIlllIlllIlll
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8
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Note that in this case the BIAS affects also the variance.
That is well observed with a Bias of 30% on the Magnetic Field

225 £ %6
3 4945
200 £ 0,
175 | C o.195 >
- s —
150 £
125 [
100 [
75 E
50 F
25
0 E = llllllllllllllllll
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 06 0.8 1
1ip - Hip(oue>0)
- 67
ocg L 4M5
- 0.87
— 0.15% >
150
100 [
50
0 C 1 l 11 1 l 11 1 l 11 1 l 1 1 -l l 1 11 l 1 11

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

1ip(bias) - Hp(aue>0)
SINCE the relational dependence between p and x is far away from linearity

(even if p e B are proportional between them)
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Finally note that the BIAS is evident only if one consider only p>0.
In case one does not distinguish between positive and negative charges the result is:

500

400

300

200

100

[ 67
N 10000
— 0-472017% Variance
- . with bias
" effect,
C anyhow
:l L1 l L1 1 I 1 I 11 1 l | I — I | I | —— V| I L1 1 l 1 L1
1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1
1ip(bias) - 1ip(ue)
2 Mean  0.22165E-03 0.17944E-02 0.53021E-03 -3.7008
3  Sigma 0.17810 0.11912E-02  0.45055E-03  -1.7154
CHISQUARE = 0.1135E+01 NPFIT = 63

Fit at 60 Degrees of Freedom (63 bins # 0 and 3 free parameters)
Stat.An.Dati Dottorato 2022/23 - Padova

46



Program used: PAW, library of CERN, (in FORTRAN ambiance)

old of about 15 years:
There is the more recent tool, ROOT (in ambiance C++)

Script in
that use the file ;

Stat.An.Dati Dottorato 2022/23 - Padova
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http://paw.web.cern.ch/paw/
http://root.cern.ch/drupal/
http://www.pd.infn.it/~stanco/didattica/Stat-An-Dati/carica.kumac
http://www.pd.infn.it/~stanco/didattica/Stat-An-Dati/carica.for

Now that we properly understood the physics and the data analysis,

one may try more sophisticated analysis.

One measures x but, at the end, one is interested to quote the momentum p,
within a proper interval, i.e. an interval corresponding to a certain Confidence Level
and with the proper coverage (68% C.L. should really be 68% !)

For a frequentist, all the information is contained in the Likelihood, which is

invariant by transformation.The dispersion of 1 cm in x can be used to compute

the 68% Confidence Interval via the Neyman belt-construction

(note: the usual error transformation is a valid approximation ONLY for small errors on x,
i.e. small Ax, since it is based on linearization)

(=]

Of course, a good measurement can be
obtained only for low momenta, i.e.

IX|>2 cm (2 sigma limit). _
Note that for small x there are two disjoint . [
regions of validity for the momentum ;

momentum p {GeV)
=t N
[4a]
|

[
[—]
I

Note that the Confidence Interval is
asymmetric with respect to the “best value”. :
E.g. for x=2 cm = p=2.62"253 ;4. GeV, 0 |

obtained from poc )
X0

-15

-20 T

1 2 3 4
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To have a more careful look at the procedure it is worth to make a simulation of a single
data point.

Take the mean measurement x=2 cm and simulate 10,000 measurements with 1 cm
dispersion, then plot the corresponding PDF for the momentum:

350 —
00 F
250 [
200 [
150 [
100 [

50

U_ILII

450
100 £
350 [
300 £
250 £
200 £
150 £
100 F
50 [

The C.I. (Confidence Interval)

for the momentum

iIs computed around the “mean’”.
One may like to choose a different
SR LT PR PUT DU ks i et oy, B way to define it !

o+ 2 3 4 5 6 7 &8 9 10 je, adifferent ORDERING rule

< = GeY
p=2.62+2'63_0_87 GeV
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The choice of the ORDERING rule

An ordering rule is a rule that orders parameter values according to their perceived
compatibility with the observed data. Here are some examples, all assuming that
we have observed data z and are interested in a 68% confidence interval [u1, p2]
for a parameter . whose maximum likelihood estimate is ji(z):

e Central ordering
(141, p2] is the set of u values for which the observed data falls between the 16"
and 84" percentiles of its distribution.

The latter is the rule chosen in the previous slide, but here are some other examples:

e Probability density ordering
|11, p2] is the set of u values for which the observed data falls within the 68%
most probable region of its distribution.
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e Likelihood ratio ordering
(1, p2] is the set of u values for which the observed data falls within a 68%

probability region R, such that any point z inside R has a larger likelihood ratio
L(p|z)/L(a(z)|z) than any point outside R.

This the rule chosen by Feldman-Cousins in their (in)famous method .

e Upper limit ordering
| — 00, p2] is the set of u values for which the observed data is at least as large

as the 3229 percentile of its distribution.

e Minimal expected length
This rule minimizes the average of us(z) — pi(z) over the sample space.

Stat.An.Dati Dottorato 2022/23 - Padova 51



As a matter of fact, choose your own rule relying on the kind

of measurement you are doing !
(and report it in your scientific paper)

My choice for the momentum measurement is the maximum probability

(or the Likelihood ratio, the same thing in this example)

450 F
100 F
350 F
300 E
250 E
200 F
150 F
100 E
50 F
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p=2.05"1°,7

Rather different C.I.
p in [1.55-3.75]
against

p in [1.75-5.25]

at the same C.L. of 68%

a useful trick: Monte Carlo, Monte Carlo, Monte Carlo...
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We may also want to look at the Bayes posterior by using the Jeffreys’ prior

1 (up—l/pbest)z
The likelihood for the momentum pis  L(p;p, )xe 2 °

where sigma is the estimated dispersion on the curvature, i.e. 0.1954 GeV-'
(see bottom plot of slide 32)

1
— (Ppest IS @ variable !)

best

since 12{_ f N 3 flf(l)d(l)}= 12{_ f + f }
o p best p best p p p o p best p best
e

The Jeffreys’ prior is TC 1 (Ppost)

2 o

2
_l( 1/p_l/pbest )

And the properly normalized posterior becomes:  P(Pyey; P) = N
best
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Which kind of PDF is the previous posterior ?

Q.7 =
_1(1/p—1/pbest)2 06 £
e’ o a.5 — for preas= 2 GeV
P(pysP) =—F—— o b
2‘71'"0'pbest
0.3 -
0.2 [
a1 E—
OElllllllllll[lllllllllll A I
-0 -8 -6 -4 -2 0 g8 10
o L . ost (GEV,
Indeed it gives good insight of the probability. ~ 204ee(-ta.1:0s=1/xw2)/(xe) P  (GeV)
0.12 '
a1 |
L for Ppeas= 10 GeV

. re 008

and good estimate of the probability o -

to compute the wrong charge T

but it is a very biased estimate of ppes; “** |

(the two maxima never exceed 1/cV2 %% [

i.e. 3-6 Gev) O—‘I_Ol 1 1 1 1 1 1 1 1 1 L1 1 1 ':!} 1 L
2.04%exp{—13.1%(0.1—1 /% %2} / (o) p (Ge V)
best
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While the uniform Prior works rather badly...

> E
2 -
1{1/p-1/ 1.75 =
—5(%) s E for Preas= 2 GeV
e E
. — 1.25 |
P(pbest’p)_ \/EO' ' 3
0.75 E—
05
4 b 0.25 | }
1’2 E— O E ' 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 I 1 1 1 1
B -10 0 10 20 30 40 50
0s | . _ _ pbest (Ge V)
os b (Changlng SCa/e) 2.04+exp(—13.14(0.5—1/x)*42)
o |
0.2 F
T et et Vo L L T T

o & ! N
-10¢ -80 -60 -—-40 =20 4] 20 440 ] 80 100

2.04exp(—13.1%(0.5—1 /x)#22)

To me, this is an example where the Frequentist approach works better than

the Baysian one.

In the Frequentist approach it is easier to understand the constraints of the
measurements and put a priori cuts to define properly the region of good measure,
l.e. it is an example where to deal first with data, without assuming them to

include all the information.
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A note on the handling of the Confidence Interval chosen in slide 42:

450 E
400 F
350 £
300 E
250 £
200 £
150 £
100 F
50

p=2.05*"°;

The final decision depends on what one is more interested to (Cl or Central Value).

In case of CV the estimation has to be consistent (i.e. with the tendency to the true value).
In frequentist language the previous choice is not consistent.

In Bayesian it corresponds to use a flat distribution (Posterior=Likelihood) and it becomes
more “understandable”, even if with the drawbacks of previous slide.
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BACKUP SLIDES
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PROBABILITY

Chevalier de Méré — Blaise Pascal & Pierre de Fermat (1654)

de Méré looked at the 2 cases: 1) 4 rolls of a dice
2) 24 rolls of 2 dices

/—-*‘“"M-\

/ WHAT'S LIKELIER:

ROLLING AT LEAST ONE
SIX IN FOUR THROWS OF
A $IN6LE DIE, OR
ROLLING AT LEAST ONE

POUBLE 51X IN 24

THROWS OF A PAIR OF
DICE?

SS— _ .
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THE CHEVALIER REASONED
THAT THE AVERAGE NUMBER
OF SULLESSFUL ROLLS WAS
THE SAME FOR BOTH GAMBLES:

CHANCE OF ONE 41X = 1

AVERALE NUMBER 1y
FOUR ROLLS - 4(1‘# =

CHANCE OF DoUBLE
X IN ONE ROLL = R

AVERALE NUMBER N,
WROLLY=24.(5) = 3

- Wi o

WHY, THEN, DID UE LOSE
MORE OFTEN WITH THE
SECOND GAMBLE???7
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Pascal and Fermat exchanged some
letters and in few months basic of the
new Science was settled (1654).

Mistake: formulation of multiplicative
law on the “different cases”
(the “event” corresponds to the possible
outcome, NOT to the roll)

BASIC DEFINITIONS

AS OUR GAMBLER PLAYS A GAME, WE PLAY
SCIENTIST, OBSERVING THE OUTCOME:

o
»random experiment
19 THE PROCESS OF OBSERVING THE
OUTCOME OF A CHANCE EVENT.

e elementary
ovutcomes irc AL pos-
51BLE RESULTS OF THE RANDOM EX-
PERIMENT.

ric sample space
THE SET OR COLLECTION OF ALL THE
ELEMENTARY OUTLOMES.

We have instead to define the set of possible outcomes and to construct

the basic laws.

We introduce the concept of “event” to which apply the probability
and its multiplicative law (to be defined).

EVENT : RANDOM VARIABLE

Stat.An.Dati Dottorato 2022/23 - Padova
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Bayesian Hypothesis Testing (1)

The Bayesian approach to hypothesis testing is to calculate posterior probabilities
for all hypotheses in play. When testing Hj versus H;, Bayes' theorem yields:

P(CU | Ho) o
p(z|Ho)mo + p(z|H1) m1’ = px)=Int(Hy,H,)

m(Hy|z) = 1 — w(Hp|z),

w(Ho|x) =

where 7; is the prior probability of H;, ¢ =0, 1.

If m(Ho|xz) < w(Hy|z), one rejects Hy and the posterior probability of error is
7(Hp | ). Otherwise Hy is accepted and the posterior error probability is w(H; | z).

In contrast with frequentist Type-l and Type-ll errors, Bayesian error probabilities
are fully conditioned on the observed data. It is often interesting to look at the
evidence against H; provided by the data alone. This can be done by computing

the ratio of posterior odds to prior odds and is known as the |Bayes factor:

Bu(e) = "I UTIRLD

In the absence of unknown parameters, By:(z) is a likelihood ratio. -



In general there are many possible critical regions C that correspond to a given,
suitably small a. The idea of the Neyman-Pearson theory is to choose C so as to
minimize (3 at that value of a. In the above example, the distributions fy and f;
are fully known (“simple vs. simple testing”). In this case it can be shown that, in
order to minimize 3 at a fixed «, C must be of the form:

C = {z: folz)/fi(z) < ca},

where c,, is a constant depending on .. This result is known as the Neyman-Pearson
lemma, and the quantity fo(z)/fi(x) is known as a likelihood ratio.

Unfortunately it is usually the case that fy and/or f; are composite, meaning that
they depend on one or more unknown parameters v. The likelihood ratio is then

defined as:

sup fo(z |v)
vE Hy

sup fi(z|v)
vEH,

Although the Neyman-Pearson lemma does not generalize to the composite
situation, the likelihood ratio remains a useful test statistic.

Az) =
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The Neyman-Pearson Theory of Testing (3)

The Neyman-Pearson theory of testing is most useful in quality-control applications,
when a given test has to be repeated on a large sample of identical items. In HEP
we use this technique to select events. For example, if we want to measure the
mass of the top quark, for each event in some appropriate trigger stream we set
H, to the hypothesis that the event contains a top quark, and choose cuts that
minimize the background contamination (3) for a given signal efficiency (1 — a).

On the other hand, this approach to testing is not very satisfactory when dealing
with one-time testing situations, for example when testing a hypothesis about a
new phenomenon such as the Higgs boson or SUSY. This is because the result of a
Neyman-Pearson test is either “accept Hy' or “reject Hy"”, without consideration
for the strength of evidence contained in the data. In fact, the level of confidence

in the decision resulting from the test is already known before the test: it is either
l—aorl-—2_.

There are several ways to address this problem: the frequentist approach uses

p values exclusively, whereas the Bayesian one works with posterior hypothesis
probabilities, Bayes factors, and p values.
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Asymptotic Distribution of the Likelihood Ratio Statistic (1)

The likelihood ratio statistic for testing Hp : 8 € Oq versus H; : 0 € O\ 0O is

where @ is the maximum likelihood estimate (MLE) under Hy and 6 is the
unrestricted MLE.

Note that 0 < A(X) < 1. A likelihood ratio test is a test whose rejection region
has the form {z : A(z) < ¢}, where c is a constant between 0 and 1.

To calculate p values based on A(X) one needs the distribution of A(X) under Hy:

Under suitable regularity conditions it can be shown that the asymptotic distribution
of —2In A(X) under Hj is chisquared with v — vy degrees of freedom, where
v = dim © and Vg = dim @0.
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