

#### Giovanni De Lellis

#### Università "Federico II" di Napoli and INFN Napoli On behalf of the OPERA Collaboration

## CNGS in 2011

- CNGS in dedicated mode (CNGS + LHC) since March 18<sup>th</sup> until June 7<sup>th</sup> (4 additional weeks due to North Area problems)
- Expected to run for 223 days (till November 20<sup>th</sup>)  $\rightarrow$  > 5 x 10<sup>19</sup> pot
- Integral (2008÷2011)  $\rightarrow$  ~14.5 x 10<sup>19</sup> pot ~ 65% of 5 nominal years



# SPS super-cycle with 6 CNGS cycles + LHC in dedicated mode



### 2011 run: integrated pot so far





## CNGS beam performance

## Detector and facilities performance

#### Improvements in the understanding of the electronic detector New Journal of Physics 13 (2011) 053051



#### Brick manipulator system



#### Target mass evolution



#### Emulsion development facility



#### Scanning of Changeable Sheets: several tasks accomplished



LNGS: 11 microscopes, 220 cm<sup>2</sup>/h



Nagoya: 5 S-UTS, 220 cm<sup>2</sup>/h



#### So far ~ 1000000 cm<sup>2</sup> analyzed

28/06/2011

Giovanni De Lellis, SPSC Meeting 102

## Improvements in the emulsion analysis

#### Speed up CC event analysis: likelihood to replace visual inspection



#### Speed up the analysis of events without $\mu$ in the final state: vertex pre-definition



28/06/2011

### Study of CS tracks as seen in the brick





## Improved decay search procedure



#### Decay search: penetrating tracks discarded



### Decay search: track selection



## Decay search: electron pair



## Decay search: kink topology detected



## Current status of the data analysis

## Performance plot



### Our strategy: analysis of 2008/09 runs

|                                             | 0mu  | 1mu  | All  |
|---------------------------------------------|------|------|------|
| Events predicted by the electronic detector | 1503 | 3752 | 5255 |
| Interactions located in ECC                 | 519  | 2280 | 2799 |
| Located in dead material                    | 54   | 245  | 299  |
| Decay search performed                      | 494  | 2244 | 2738 |
|                                             |      |      | 4    |

1088 in Phys. Lett. B691 (2010) 138

# Results of the decay search: neutrino induced charmed hadron production

• Charm topology analogous to  $\tau$  (similar lifetime)

 $D0 \rightarrow 4 \text{ prong}$ 

Charged charm  $\rightarrow$  trident



28/06/2011

Giovanni De Lellis, SPSC Meeting 102

#### Charm events as a control sample (data versus MC)

| Topology        | Observed events | Expected events |            |          |  |
|-----------------|-----------------|-----------------|------------|----------|--|
|                 |                 | Charm           | Background | Total    |  |
| Charged 1-prong | 13              | 15.9            | 1.9        | 17.8     |  |
| Neutral 2-prong | 18              | 15.7            | 0.8        | 16.5     |  |
| Charged 3-prong | 5               | 5.5             | 0.3        | 5.8      |  |
| Neutral 4-prong | 3               | 2.0             | <0.1       | 2.1      |  |
| Total           | 39              | 39.1±7.5        | 3.0±0.9    | 42.2±8.3 |  |



# Interesting by-product of the analysis chain: detection of $v_e$ in muonless events



## 14 events in the analyzed sample $\nu_{\mu} \rightarrow \nu_{e}$ analysis ongoing

Giovanni De Lellis, SPSC Meeting 102



Detection of the first  $v_{\tau}$ candidate event PLB691 (2010) 138

| Variable                 | Value                          |
|--------------------------|--------------------------------|
| kink (mrad)              | 41 ± 2                         |
| decay length ( $\mu m$ ) | 1335 ± 35                      |
| P daughter (GeV/c)       | 12 <sup>+6</sup> <sub>-3</sub> |
| Pt (MeV/c)               | 470 <sup>+230</sup> -120       |
| missing Pt (MeV/c)       | 570 <sup>+320</sup> -170       |
| φ (deg)                  | 173 ± 2                        |
|                          | 27                             |

## While analyzing 2008/09: analysis of 2010 and 2011 runs in progress

#### Status of the 2010 run

|                                             | 0mu  | 1mu  | All  |
|---------------------------------------------|------|------|------|
| Events predicted by the electronic detector | 1165 | 2747 | 3912 |
| Extracted CS                                | 1146 | 2700 | 3846 |
| CS Scanned                                  | 1043 | 2517 | 3560 |
| Found in CS                                 | 479  | 1420 | 1909 |
| Interactions located in ECC                 | 156  | 558  | 714  |
| Decay search                                | 113  | 381  | 494  |

## Improvements in the data analysis

#### Full emulsion simulation OpEmurec code

Vertex position distribution within the brick: Located interactions for events without  $\mu$  in the final state are compared with OpEmurec simulation



#### Background reduction: systematic track follow-up for muon detection Tested in the analysis of the first $v_{\tau}$ candidate



•Hadronic interactions in  $v_{\mu}$  CC with misidentified  $\mu$  ( $\tau \rightarrow h$  channel) •Hadronic interactions in  $v_{\mu}$  CC and NC ( $\tau \rightarrow \mu$  channel)

•Charm

#### Track follow-down analysis

- $\checkmark$  Interaction visible in the brick
- ✓ Momentum/range correlation

Discriminating variable

$$D = \frac{L}{R_{\text{lead}}(p)} \frac{\rho_{\text{lead}}}{\rho_{\text{average}}}$$

L = track length  $R_{lead} = \mu \text{ range}$   $\rho_{average} = \text{average density along the path}$   $\rho_{lead} = \text{lead density}$ p = momentum measured in emulsion

- Mis-ID muons in charm events 3.28% (was 5%)
- 2 orders of magnitude reduction of the  $\tau \rightarrow \mu$ background due to  $\mu$  mis-match in CC and NC events





#### Measure interactions far from the $\tau$ decay region

- Search for interactions and "kinks" along 14 m of hadron tracks in neutrino events. 5 times larger than the so far scanned track length for NC events
- No events in the signal region
- 90% CL upper limit of 1.0 x 10<sup>-3</sup> kinks/NC event
- In the boundary region ( $P_{\perp} > 200 \text{ MeV/c}$ ) 10 observed events (10.8 expected)



#### MC validation by $\pi$ beam test Two 4 GeV/c $\pi$ beam exposures: KEK and CERN



Daughter p (GeV/c)

#### Summary of physics background

- Production and decay of charmed particles
- Hadron re-interactions
- Large angle  $\mu$  scattering

| Decay                  | Number of background events for: |        |      |                 |                 |        |      |                 |
|------------------------|----------------------------------|--------|------|-----------------|-----------------|--------|------|-----------------|
| channel                | $22.5 \times 10^{19}$ p.o.t.     |        |      |                 | Analysed sample |        |      |                 |
|                        | Charm                            | Hadron | Muon | Total           | Charm           | Hadron | Muon | Total           |
| $\tau{\rightarrow}\mu$ | 0.025                            | 0.00   | 0.07 | $0.09 \pm 0.04$ | 0.00            | 0.00   | 0.02 | $0.02 \pm 0.01$ |
| $\tau \rightarrow e$   | 0.22                             | 0      | 0    | $0.22 \pm 0.05$ | 0.05            | 0      | 0    | $0.05 \pm 0.01$ |
| $\tau \rightarrow h$   | 0.14                             | 0.11   | 0    | $0.24 \pm 0.06$ | 0.03            | 0.02   | 0    | $0.05 \pm 0.01$ |
| $\tau \rightarrow 3h$  | 0.18                             | 0      | 0    | $0.18 \pm 0.04$ | 0.04            | 0      | 0    | $0.04 \pm 0.01$ |
| Total                  | 0.55                             | 0.11   | 0.07 | $0.73 \pm 0.15$ | 0.12            | 0.02   | 0.02 | $0.16 \pm 0.03$ |

- Charm production cross-section increased (last CHORUS data)
- $\bullet$  Fragmentation fraction into  $D^+$  increased from 10% to 22%
- Improvements due to the track follow-down
- Significant reduction of the background in the  $\tau \rightarrow \mu$  channel

## Signal events

| Decay channel          | Number of signal events expected for |                 |  |  |
|------------------------|--------------------------------------|-----------------|--|--|
|                        | $22.5 \times 10^{19}$ p.o.t.         | Analysed sample |  |  |
| $\tau \rightarrow \mu$ | 1.79                                 | 0.39            |  |  |
| $\tau \rightarrow e$   | 2.89                                 | 0.63            |  |  |
| $\tau \rightarrow h$   | 2.25                                 | 0.49            |  |  |
| $\tau \rightarrow 3h$  | 0.71                                 | 0.15            |  |  |
| Total                  | 7.63                                 | 1.65            |  |  |

- One v<sub>τ</sub> candidate observed in the τ → h channel where 0.49±0.12 events are expected with a background of 0.05±0.01 event
- The probability for the event not to be due to a background fluctuations is 95%

## Conclusions

- CNGS is performing well for the 2011 run. Chance to go beyond the CNGS nominal year (4.5 x 10<sup>19</sup> pot)
- Thanks to the CNGS team and to CERN for the strong support
- Improving performance of the OPERA detector and of its ancillary facilities
- Analysis of the 2008/09 data sample: better knowledge of experimental features, background and efficiencies. Several notable improvements
- One  $v_{\tau}$  candidate observed with a significance of 95% in the hadronic channel
- These results are being submitted for publication to Phys. Lett. B
- In parallel: scanning and analysis of 2010 and 2011 in progress
- Next goal: high statistics study of  $v_{\mu} \rightarrow v_{\tau}$  by next year
- Working on  $v_{\mu} \rightarrow v_{e}$  search. Exploit the peculiar capabilities of OPERA in identifying electrons. Aim at contributing soon to the international effort