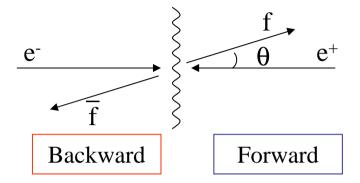


Asimmetrie Forward-Backward



$$A_{FB}^{f} = \frac{\sigma_F^f - \sigma_B^f}{\sigma_F^f + \sigma_B^f}$$

$$\sigma_F^f = 2\pi \int_0^1 \frac{d\sigma}{d\Omega} d\cos\theta$$

$$\sigma_B^f = 2\pi \int_{-1}^0 \frac{d\sigma}{d\Omega} d\cos\theta$$

$$\sigma_F^f = 2\pi \int_0^1 \frac{d\sigma}{d\Omega} d\cos\theta$$

Lezione 18 Maggio

Line shape Z

$$\left(\frac{d\sigma_{f\overline{f}}}{d\Omega}\right)^{EW} = \frac{\alpha^2 Q_F^2 N_C}{4s} \left[F_1(s)(1+\cos^2\vartheta) + F_2(s)\cos\vartheta\right]$$
termine di asimm

termine di asimmetria

"costanti" v_f e a_f

$$\Gamma_f = N_C \frac{G_F M_Z^3}{6\pi\sqrt{2}} (g_{Vf}^2 + g_{Af}^2)$$
 $g_{Vf} = I_{3f} - 2 Q_f sin^2 \theta_W$

$$g_{Vf} = I_{3f} - 2 Q_f sin^2 \theta_W$$

$$g_{Af} = I_{3f}$$

Nell'espressione di Γ_f la costante di Fermi G_F puo' essere sostituita con α :

$$M_W^2 = \frac{e^2}{4G_F \sqrt{2} \sin^2 \theta_W} \qquad M_Z = \frac{M_W}{\cos \theta_W} \qquad \Longrightarrow \qquad G_f = \frac{\alpha \pi}{4\sqrt{2} M_Z^2 \sin^2 \theta_W \cos^2 \theta_W}$$

Introducendo le costanti v_f e a_f :

$$v_f = \frac{g_{Vf}}{2\sin\theta_W \cos\theta_W} = \frac{I_{3f} - 2Q_f \sin^2\theta_W}{2\sin\theta_W \cos\theta_W} \qquad a_f = \frac{g_{Af}}{2\sin\theta_W \cos\theta_W} = \frac{I_{3f}}{2\sin\theta_W \cos\theta_W} = \frac{I_{3f}}{2\sin\theta_W \cos\theta_W}$$

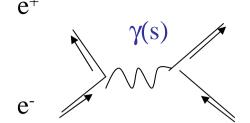
$$a_f = \frac{g_{Af}}{2\sin\theta_W\cos\theta_W} = \frac{I_{3f}}{2\sin\theta_W\cos\theta_W}$$

si semplifica la nuova espressione di $\Gamma_{\rm f}$

$$\Gamma_f = N_C \frac{\alpha M_Z}{3} (v_f^2 + a_f^2)$$

Ezio Torassa

Dottorato in Fisica XX Ciclo





$$\frac{d\sigma_{f\bar{f}}}{d\Omega} = \frac{\alpha^2 Q_F^2 N_C}{4s} \sqrt{1 - 4\mu_f} \left[G_1(s)(1 + \cos^2 \vartheta) + 4\mu_f G_2(s) \sin^2 \theta + \sqrt{1 - 4\mu_f} G_3(s) 2 \cos \vartheta \right]$$

$$\frac{d\sigma_{f\overline{f}}}{d\Omega} = \frac{\alpha^2 Q_F^2 N_C}{4s} \left[G_1(s)(1+\cos^2\vartheta) + G_3(s) 2\cos\vartheta \right] \qquad (\mu_f = m_f^2/s)$$

$$\mu_f << \sqrt{s}$$

$$(\mu_f = m_f^2 / s)$$

$$\mu_f << \sqrt{s}$$

$$G_1(s) = Q_e^2 Q_f^2 + 2Q_e Q_f v_e v_f (\text{Re} \chi_o(s)) + \left[(v_e^2 + a_e^2)(v_f^2 + a_f^2) | \chi_o(s) |^2 \right]$$

$$G_3(s) = 2Q_e Q_f a_e a_f (\text{Re} \chi_o(s)) + \left[4v_e a_e v_f a_f) |\chi_o(s)|^2 \right]$$

$$\chi_0(s) = \frac{s}{s - M_Z^2 + iM_Z\Gamma_Z}$$

$$\chi_0(s) = \frac{s}{s - M_Z^2 + iM_Z \Gamma_Z}$$

$$\operatorname{Re} \chi_0(M_Z^2) = 0$$

$$|\chi_0(M_Z^2)|^2 = \left(\frac{M_Z}{\Gamma_Z}\right)^2$$

Termini dominanti

Padova 30 Maggio 2005

Ezio Torassa

Dottorato in Fisica XX Ciclo

$$\int_{-1}^{1} (1 + \cos^2 \theta) d \cos \theta = \frac{8}{3}$$

$$G_3(s) \qquad \int_{1}^{1} \cos\theta \ d\cos\theta = 0$$

$$\sigma_F + \sigma_B \begin{cases} G_I(s) & \int_{-1}^{1} (1 + \cos^2 \theta) d \cos \theta = \frac{8}{3} \\ G_3(s) & \int_{-1}^{1} \cos \theta d \cos \theta = 0 \end{cases}$$

$$\sigma_F - \sigma_B \begin{cases} G_I(s) & \int_{0}^{1} (1 + \cos^2 \theta) d \cos \theta = \int_{-1}^{0} (1 + \cos^2 \theta) d \cos \theta = 0 \\ G_3(s) & \int_{0}^{1} \cos \theta d \cos \theta - \int_{-1}^{0} \cos \theta d \cos \theta = \frac{1}{2} - \left(-\frac{1}{2}\right) = 1 \end{cases}$$

$$A_{FB}^{f} = \frac{2G_3(s)}{8/3G_1(s)} = \frac{3}{4} \frac{G_3(s)}{G_1(s)}$$

Per $s=M_2^2$ (considerando i termini dominanti)

$$A_{FB}^f = \frac{3}{4} \left(\frac{2a_e v_e}{a_e^2 + v_e^2} \right) \left(\frac{2a_f v_f}{a_f^2 + v_f^2} \right) = \frac{3}{4} A_e A_f$$

$$\frac{d\sigma_{f\overline{f}}}{d\Omega} = \frac{\alpha^2 Q_F^2 N_C}{4s} \left[G_1(s)(1+\cos^2\vartheta) + G_3(s) \cos\vartheta \right]$$

$$\frac{d\sigma_{f\overline{f}}}{d\Omega} \propto (1 + \cos^2 \vartheta) + \frac{G_3(s)}{G_1(s)} 2\cos \vartheta$$

$$G_1(s) \cong (v_e^2 + a_e^2)(v_f^2 + a_f^2) |\chi_o(s)|^2$$

$$G_3(s) \cong 4v_e a_e v_f a_f) |\chi_o(s)|^2$$

$$\frac{d\sigma_{f\overline{f}}}{d\Omega} \propto (1 + \cos^2 \vartheta) + A_e A_f 2 \cos \vartheta$$

Il prodotto A_e A_f è il termine moltiplicativo di $cos\theta$

$$\frac{d\sigma_{f\overline{f}}}{d\Omega} \propto (1 + \cos^2 \vartheta) + \frac{8}{3} A_{FB} \cos \vartheta$$

Metodo di conteggio

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

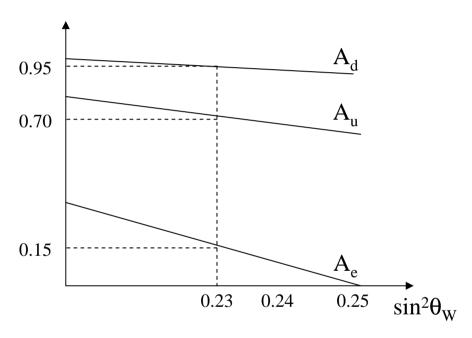
Metodo di "maximum likelihood fit"

$$L = \prod_{i} \left((1 + \cos^2 \vartheta_i) + \frac{8}{3} A_{FB} \cos \vartheta_i \right)$$

Con il conteggio non si assume la distribuzione prevista in θ

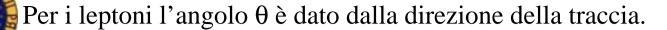
Con la likelihood si ottiene un errore statistico minore

$$A_f = \frac{2a_f v_f}{a_f^2 + v_f^2} = \frac{2g_{Af} g_{Vf}}{g_{Af}^2 + g_{Vf}^2} = \frac{2I_{3f} (I_{3f} - 2Q_f \sin^2 \theta_W)}{(I_{3f})^2 + (I_{3f} - 2Q_f \sin^2 \theta_W)^2}$$

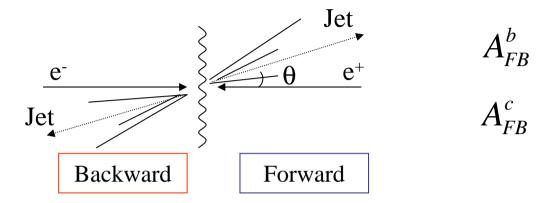


All'ordine piu' basso l'asimmetria forward-backward e' determinata esclusivamente dal valore di $\sin^2\!\theta_{\rm W}$

Misura A_{FB} per diversi $f \rightarrow confronto$ tra diverse stime di $sin^2\theta_W$

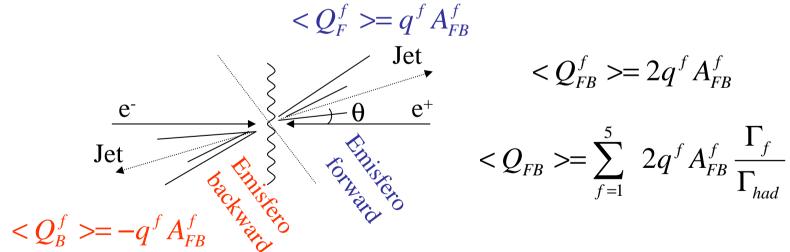


Per i quarks si identifica la direzione del quark con l'asse del jet



Un metodo che permette di non dover selezione la tipologia di quark è

l'asimmetria di carica:

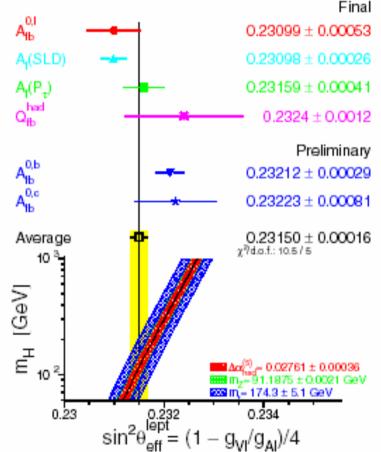


$$A_{FB}^{l}$$
 A_{FB}^{c} A_{FB}^{b} $< Q_{FB} >$

$$\sin^2 \theta_W = \sin^2 \theta_{eff} = \sin^2 \theta_{\overline{MS}}$$
 Efficace $\frac{\text{Minima}}{\text{Sottrazione}}$

La corrispondenza tra la misura di asimmetria e l'angolo di Weinberg dipende dallo schema delle correzioni perturbative.

$$\sin^2\theta_{eff} \cong \sin^2\theta_{\overline{MS}} + 0.00029$$



Eur Phys J C 33, s01, s641 –s643 (2004)

sin²θ^{eff}_W e correzioni perturbative

Il modello QE_WD ha 3 parametri (tralasciando le masse dei fermioni e dell'Higgs)

Abbiamo indicato tali parametri con α , $\sin \theta_{\rm W}$ e $G_{\rm F}$

La scelta piu' opportuna è quella di utilizzare come parametri le grandezze misurabili con maggior precisione:

- 1) α determinato dal momento magnetico anomalo dell'elettrone e dall'effetto Hall quantistico
- 2) G_F determinato dal tempo di vita del muone
- 3) M_Z determinato dalla line shape della Z $\sin\theta_W$ e M_W diventano grandezze derivate che dipendono da m_t e m_H .

Consideriamo $\sin \theta_W$, esso può essere espresso in diversi modi tra loro equivalenti nella trattazione all'ordine piu' basso ma differenti (seppur di poco) considerando le correzioni perturbative:

(1)
$$\sin^2 \theta_W \equiv 1 - \frac{M_W^2}{M_Z^2}$$
 (2) $\sin^2 \theta_W \cos^2 \theta_W \equiv \frac{\pi \alpha}{\sqrt{2}G_F M_Z^2}$

Nella definizione (2) le dipendenze da m_t e m_H sono rimosse per definizione ma restano per le altre grandezze derivate.

Anche per G_F occorre puntualizzare la definizione. La grandezza che si misura con precisione e' τ_μ . Se con G_F si intende la costante della langrangiana di Fermi allora la relazione tra τ_μ e G_F dipende dall'ordine perturbativo considerato e l'errore nella stima di G_F contiene un contributo teorico (così avviene per il valore fornito dal PDG). Diversamente si puo' scegliere uno schema di rinormalizzazione e definire G_F dalla relezione con τ_μ che ne deriva.

Uno schema spesso utilizzato per la definizione dell'angolo di Weinberg è quello denominato "efficace"

 $\sin \theta^{eff}_{W}$ è correlato alle costanti assiale-vettore e vettore come all'ordine piu' basso tranne che per un termine moltiplicativo $\sqrt{\rho_{eff}}$ (fattorizzazione delle costanti g)

$$\overline{g}_{Af} = \sqrt{\rho_{eff}} I_{3f}$$

$$\overline{g}_{Vf} = \sqrt{\rho_{eff}} \left(I_{3f} - 2Q_f \sin^2 \theta_W^{eff} \right)$$

$$A_{FB}^{f} = 3 \left(\frac{\frac{-}{g_{Ae}} \frac{-}{g_{Ve}}}{\frac{-}{g_{Ae}} + g_{Ve}} \right) \left(\frac{\frac{-}{g_{Af}} \frac{-}{g_{Vf}}}{\frac{-}{g_{Af}} + g_{Vf}} \right)$$

$$\Gamma_{f} = N_{C} \frac{G_{F} M_{Z}^{3}}{6\pi \sqrt{2}} (g_{Vf}^{2} + g_{Af}^{2})$$

Dalla misura di A_{FB} ricavo $\sin 2\theta \, ^{eff}_{W}$

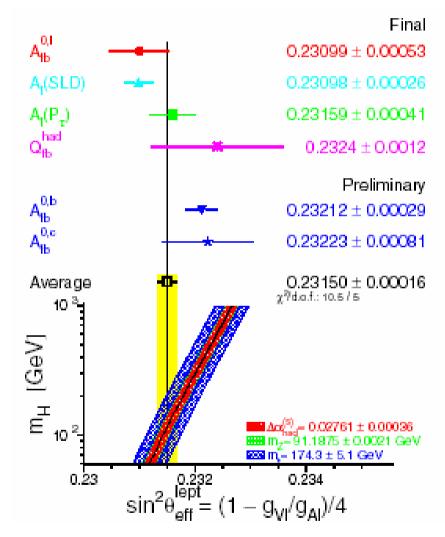
L'angolo efficace è correlato alle masse M_Z M_W m_t m_H

$$\sin^2 \theta_w^{eff}(s) = (1 + \frac{\Delta \rho}{\tan \theta^2 w}) \sin^2 \theta_w$$

$$\Delta \rho = \frac{\alpha(M_Z)}{\pi} \frac{m_t^2}{m_Z^2} - \frac{\alpha(M_Z)}{4\pi} \log \left(\frac{m_H^2}{m_Z^2}\right) + \dots$$

$$\sin^2 \theta_w^{eff}(s) = (1 + \frac{\Delta \rho}{\tan \theta^2 w}) \sin^2 \theta_w$$

$$\sin^2 \theta_w = 1 - \frac{M_W^2}{M_Z^2}$$



angolo di mixing elettrodebole:

$$\sin^2\theta_{\text{eff}} = 0.23150 \pm .00016$$

P(χ^2)=7% (10.5/5)

0.23113 ±.00020 leptoni 0.23213 ±.00029 hadroni

$$e A_l(SLD) - A_{fb}^b$$
 2.9 σ

Dipendenza da s

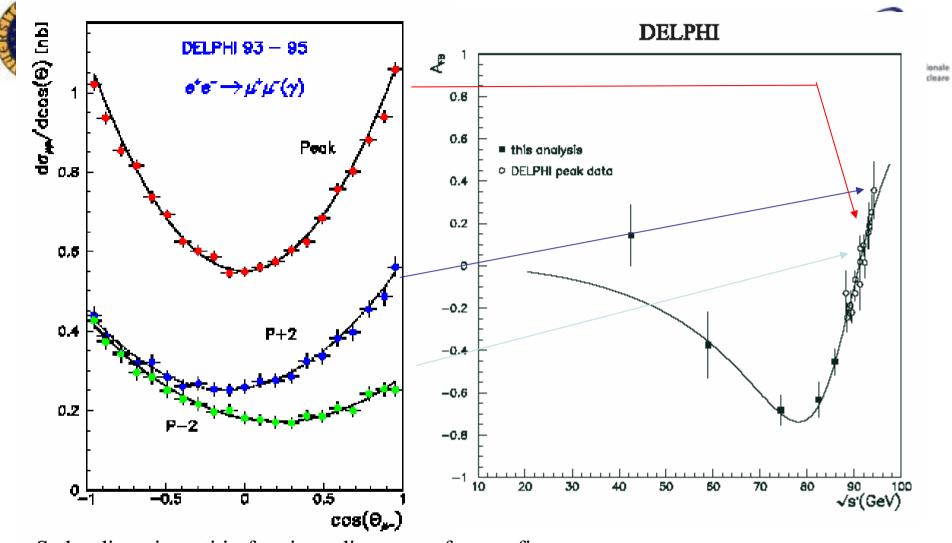
$$G_1(s) = \left[\frac{Q_e^2 Q_f^2}{Q_f^2} \right] + 2Q_e Q_f v_e v_f (\text{Re} \chi_o(s)) + (v_e^2 + a_e^2)(v_f^2 + a_f^2) |\chi_o(s)|^2$$

$$G_3(s) = \left[2Q_e Q_f a_e a_f (\text{Re} \chi_o(s)) + 4v_e a_e v_f a_f) | \chi_o(s) |^2 \right]$$

$$\chi_0(s) = \frac{s}{s - M_Z^2 + iM_Z\Gamma_Z}$$
 \Longrightarrow $\operatorname{Re}(\chi_0(s)) \cong \frac{s}{s - M_Z^2}$

Fuori dal picco I termini in $|\chi_0(s)|^2$ anzichè dominanti diventano trascurabili

$$A_{FB}^{f} = \frac{3}{4} \frac{G_{3}(s)}{G_{1}(s)} = \frac{3}{4} \frac{2Q_{e}Q_{f}a_{e}a_{f}}{Q_{e}^{2}Q_{f}^{2}} \left(\frac{s}{s - M_{Z}^{2}}\right) \longrightarrow 0$$



Se ho diversi punti in funzione di s posso fare un fit.

Quali parametri liberi lascio?

Ad esempio:

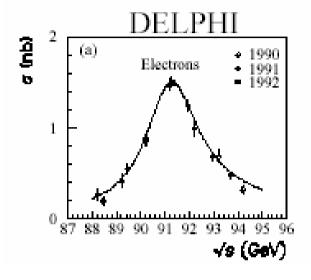
 M_Z Γ_Z $A_{FB}^{0f} = 3 \left(\frac{g_{Ae} g_{Ve}}{g_{Ae} + g_{Ve}} \right) \left(\frac{g_{Af} g_{Vf}}{g_{Af} + g_{Vf}} \right)$

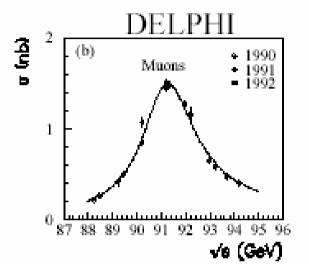
Ezio Torassa

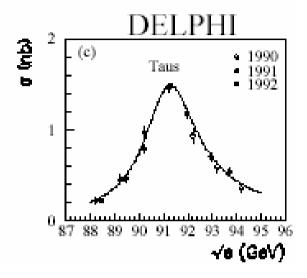
Dottorato in Fisica XX Ciclo

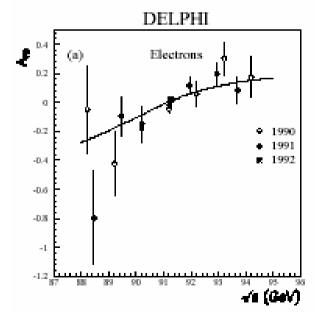
Padova 30 Maggio 2005

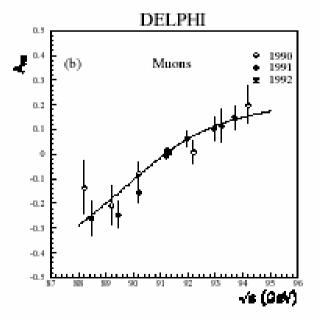
Fit con Line shape a A_{FB}

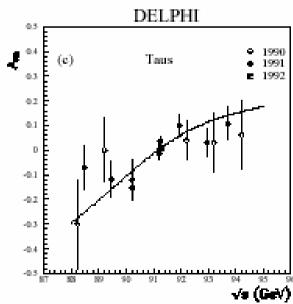


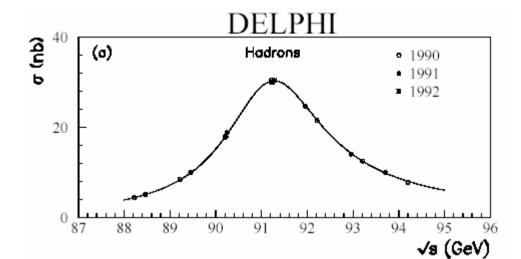












Si decidono I parametri che andranno inseriti nel fit

$$M_{Z}, \Gamma_{Z}, \sigma^{0}_{h}, R_{e}, R_{\mu}, R_{\tau}, A_{FB}^{0,e}, A_{FB}^{0,\mu}, A_{FB}^{0,\tau}$$

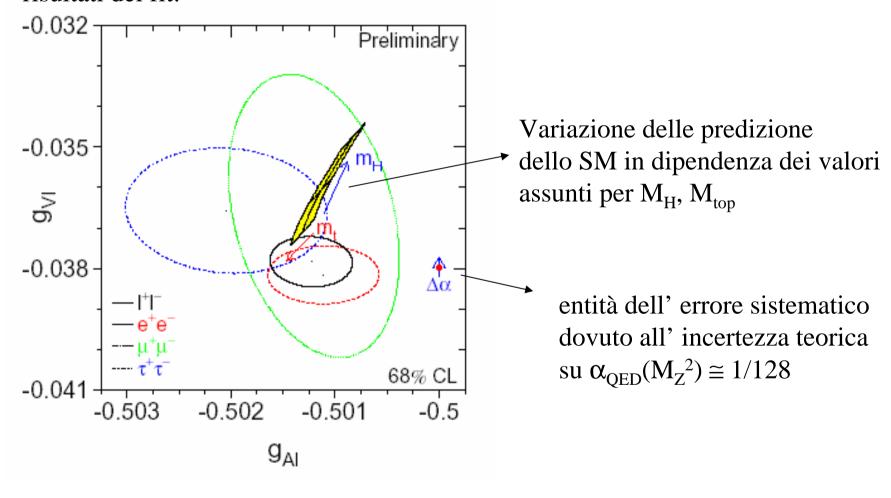
Fit a 9 parametri ove i leptoni sono considerati indipendentemente

$$M_Z$$
, Γ_Z , σ^0_h , R_l , $A_{FB}^{0,lept}$

Fit a 5 parametri ove si assume l'universalità leptonica

Universalità leptonica

Quando nel fit ai dati non si assume l'uguaglianza delle costanti di accoppiamento della Z ai fermioni, l' "universalità leptonica" prevista dallo S.M. è verificata dai risultati del fit:



DELPHI

1990 (~ 100.000 Z⁰ adronici)

1991 (~ 250.000 Z⁰ adronici)

1992 (~ 750.000 Z⁰ adronici)

$$M_z = 91187 \pm 9 \; MeV$$

$$\Gamma_z = 2483 \pm 12 \; MeV$$

$$\sigma_0^h = 41.23 \pm 0.20 \ nb$$

$$R_e = 20.74 \pm 0.18$$

$$R_u = 20.54 \pm 0.14$$

$$R_{\tau} = 20.68 \pm 0.18$$

$$A_{FB}^e = 0.025 \pm 0.009$$

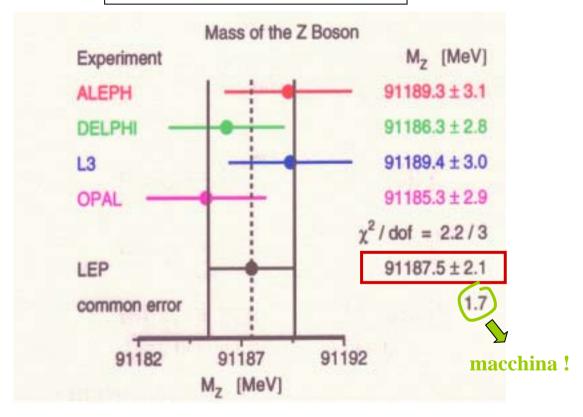
$$A_{FB}^{\mu} = 0.014 \pm 0.005$$

$$A_{FB}^{\tau} = 0.022 \pm 0.007$$

$$\chi^2 / NDF = 108/104$$

1990-1995

~ 5M Z⁰ / esperimento



$$\Delta M_{\rm Z}/M_{\rm Z} \approx 2.3 \ 10^{-5}$$

$$\Delta G_F/G_F \approx 0.9 \ 10^{-5}$$
 $\Delta \alpha(M_Z)/\alpha \approx 20 \ 10^{-5}$

Ezio Torassa

Dottorato in Fisica XX Ciclo

Fit globale

Dalle osservabili sperimentali

- sezioni d'urto, asimmetrie FB, asimmetrie LR, ecc..

si estraggono le Pseudo-osservabili, osservabili dipendenti da quelle sperimentali

- M_Z Γ_Z ecc..

includendo nella dipendenza le relazioni ad albero ed i contributi radiativi QE_WD e QCD che risultino <u>fattorizzabili</u>

(sia possibile la scomposizione delle costanti in prodotto $C_{tree}^* C_{rad}$).

Usando un programma di fit (ZFITTER) che include le correzioni 2 loop QE_wD e 3 loop QED si ricava il miglior fit per i parametri del modello e per le masse non conosciute o non bene determinate.

	Measurement	$m_{\rm H}$ sens.	Pull
	LEP 1		
$m_{\rm Z}~{\rm [GeV]}$	91.1875 ± 0.0021	_	+0.2
$\Gamma_{\rm Z} \; [{\rm GeV}]$	2.4952 ± 0.0023	2.8	-0.4
$\sigma_{\rm h}^o$ [nb]	41.540 ± 0.037	0.1	+1.7
R_{ℓ}	20.767 ± 0.025	0.8	+1.0
$A_{FB}^{\circ,\ell}$	0.01714 ± 0.00095	2.1	+0.8
A_ℓ fr. τ pol. $(*p)$	0.1465 ± 0.0032	2.8	-0.4
& c quarks: (*P)			
R_b (incl. SLD)	0.21638 ± 0.00066	0.1	+0.9
R_c (incl. SLD)	0.1720 ± 0.0030	0.0	-0.1
A _{FB} ^{0, b}	0.0997 ± 0.0016	3.9	-2.4
$A_{FB}^{D,c}$	0.0706 ± 0.0035	1.4	-1.0
q charge asym.: (*)	p)		
$\sin^2\!\theta_{eff}^{\rm lept}~(\langle {\rm Q}_{\rm FB}\rangle)$	0.2324 ± 0.0012	1.0	+0.8
	SLD		
$A\ell$	0.1513 ± 0.0021	4.4	+1.7
A_b	0.925 ± 0.020	0.0	-0.5
\mathcal{A}_{c}	0.670 ± 0.026	0.2	+0.1
LEP 2 and	$d p \overline{p}$ colliders $(*P)$		
m_W [GeV]	80.426 ± 0.034	4.4	+1.2
Γ_W [GeV]	2.139 ± 0.069	0.2	+0.7
	νN scattering		
$\sin^2 \theta_W(\nu N)$	0.2277 ± 0.0016	1.8	+2.9
atomi	c parity violation		
$Q_w(Cs)$	-72.84 ± 0.46	0.5	+0.1
	p p colliders		
m_t [GeV]	174.3 ± 5.1		+0.0

20 pseudo-osservabili

5 parametri nel fit

Fit to all data with ZFITTER				
χ^2 / DoF (prob.)	$25.4/15 \ (\chi^2 \text{ prob.} = 4.5 \%)$			
$m_{\rm Z}~{\rm [GeV]}$	91.1875 ± 0.0021			
m_{c} [GeV]	174.3 ± 4.5			
$arDeltalpha_{ m had}^{(5)}$	0.02767 ± 0.00035			
$\alpha_{\scriptscriptstyle E}$	0.1186 ± 0.0027			
$m_{ m H}$ [GeV]	96 ⁺⁶⁰			

I parametri del fit permettono di ricavare i valori attesi per le pseudo-osservabili

io Torassa

Dottorato in Fisica XX Ciclo

Fit con ZFITTER, TOPAZ0

$$\chi^2 / F = 25.5 / 15$$

$$P(\chi^2) = 4.4 \%$$

probabilità di aver un χ^2 peggiore

$$(P \cong 50 \% \text{ per } \chi^2 = F)$$

Senza NuTev:

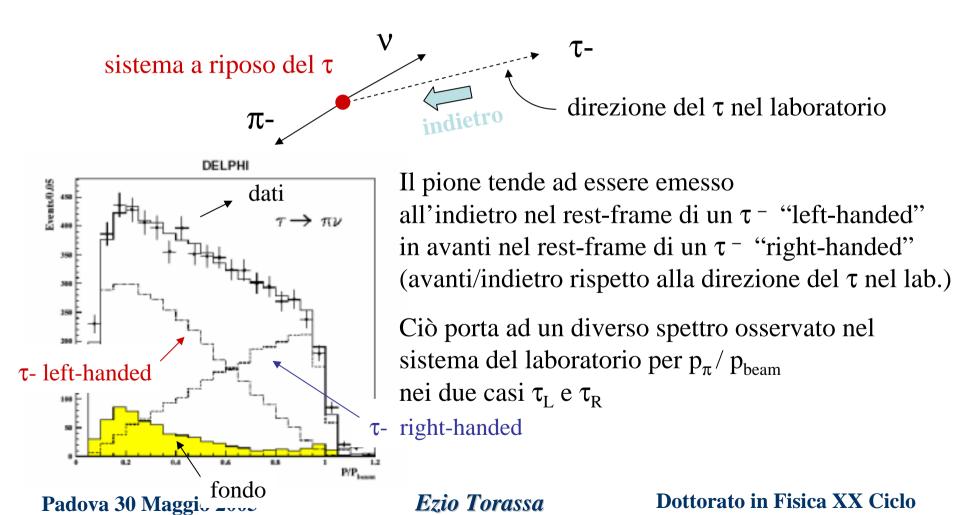
$$\chi 2 / F = 16.7 / 14$$

$$P(\chi 2)=27.3\%$$

	Winter 2		
	Measurement	Pull	(O ^{meas} -O ^{fit})/σ ^{meas} -3 -2 -1 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	-0.16	
m _z [GeV]	91.1875 ± 0.0021	0.02	
Γ _Z [GeV]	2.4952 ± 0.0023	-0.36	•
σ ၀ [nb]	41.540 ± 0.037	1.67	
R_{l}	20.767 ± 0.025	1.01	_
A _{fb} ^{0,1}	0.01714 ± 0.00095	0.79	_
$A_{l}(P_{\tau})$	0.1465 ± 0.0032	-0.42	•
R _b	0.21644 ± 0.00065	0.99	_
R _e	0.1718 ± 0.0031	-0.15	•
A ^{0,b} A ^{0,c}	0.0995 ± 0.0017	-2.43	
A _{fb} ^{0,c}	0.0713 ± 0.0036	-0.78	_
A _b	0.922 ± 0.020	-0.64	_
A _c	0.670 ± 0.026	0.07	
	0.1513 ± 0.0021	1.67	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.82	_
m _w [GeV]	80.426 ± 0.034	1.17	
Γ _w [GeV]	2.139 ± 0.069	0.67	_
m _t [GeV]	174.3 ± 5.1	0.05	
sin ² θ _W (νN)	0.2277 ± 0.0016	2.94	
Q _W (Cs)	-72.83 ± 0.49	0.12	
			-3 -2 -1 0 1 2 3

Misure di polarizzazione del τ in $Z \rightarrow \tau \tau$

La Z prodotta con fasci impolarizzati risulta comunque polarizzata a causa della violazione di parità, ne consegue una polarizzazione dei τ che può essere misurata con sui decadimenti



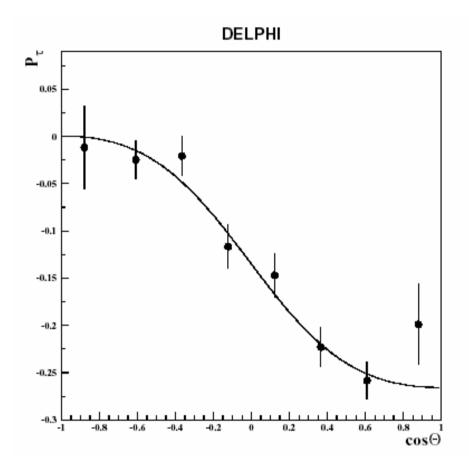
$$\frac{1}{N} \frac{dN}{dx} = \frac{1}{3} \left[\left(5 - 9x^2 + 4x^3 \right) + P_{\tau} \left(1 - 9x^2 + 8x^3 \right) \right]$$

$$x = p_{\pi} / p_{beam}$$

La polarizzazione di stato finale del τ è misurabile osservando lo spettro delle particelle in diversi decadimenti :

$$\tau \rightarrow \pi \nu$$
 $\tau \rightarrow 3\pi \nu$
 $\tau \rightarrow \rho \nu$
 $\tau \rightarrow \mu \nu \nu$, evv

La polarizzazione dipende dall'angolo θ della traccia rispetto alla direzione del fascio Le misure di polarizzazione $P_{\tau}(\cos\theta)$ vengono sommate su tutti i canali di decadimento disponibili



$$P_{\tau}(\cos\vartheta) = -\frac{A_{\tau}(1+\cos^2\vartheta) + 2A_{e}\cos\vartheta}{1+\cos^2\vartheta + 2A_{e}A_{\tau}\cos\vartheta}$$

$$A_f = \frac{g_{Vf}g_{Af}}{g_{Vf}^2 + g_{Af}^2}$$

Fit: \longrightarrow A_e A_τ

Rispetto ad A_{FB}^{τ} ricavo indipendentemente A_e e A_{τ}

Asimmetria Left-Right a SLD

Asimmetria nella sezione d'urto di produzione ee \longrightarrow ff (al picco della risonanza Z) con fasci polarizzati:

$$oldsymbol{\sigma}_L^f$$

$$A_{LR}^f = \frac{\boldsymbol{\sigma}_L^f - \boldsymbol{\sigma}_R^f}{\boldsymbol{\sigma}_L^f + \boldsymbol{\sigma}_R^f}$$

$$oldsymbol{\sigma}_{\scriptscriptstyle R}^{\scriptscriptstyle f}$$

sezione d'urto totale con fascio polarizzato 'left-handed': ($P_e = 1$) $e_L^-e+ \rightarrow ff$

sezione d'urto totale con fascio 'right-handed': $e_R^-e+ \rightarrow ff$

Per evidenziare la differenza di sezione d'urto tra e_L^- e⁺ ed e_R^- e⁺ occorre un controllo preciso della luminosità. La polarizzazione del fascio di e⁻ viene invertita alla frequenza di crossing (120 Hz) => la stessa luminosità viene "vista" per e_L ed e_R

si misura:

$$A_{mLR} = (N_L - N_R) / (N_L + N_R)$$

l' asimmetria left-right è data da:

$$A_{LR} = A_{mLR} / P_e$$

è importante la misura precisa di P_e

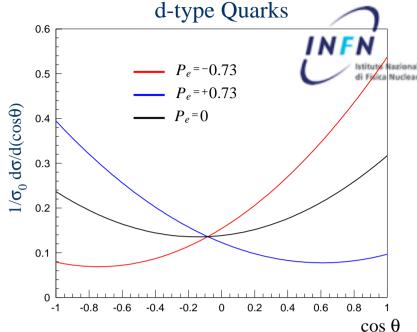
Ezio Torassa

Dottorato in Fisica XX Ciclo

Fascio non polarizzato

$$\frac{d\sigma_{f\overline{f}}}{d\cos\theta} \propto (1+\cos^2\vartheta) + A_e A_f 2\cos\vartheta$$

Fascio con polarizzazione parziale



$$\frac{d\sigma_{f\overline{f}}}{d\cos\theta} \propto (1 + P_e A_e)(1 + \cos^2\vartheta) + (A_e - P_e)A_f \cos\vartheta$$

Avendo la stessa luminosità per polarizzazioni uguali ma di segno opposto, mediando P⁺ con P⁻

$$A_{FB}^{f} = \frac{\boldsymbol{\sigma}_{F}^{f} - \boldsymbol{\sigma}_{B}^{f}}{\boldsymbol{\sigma}_{F}^{f} + \boldsymbol{\sigma}_{B}^{f}} = \frac{3}{4} A_{e} A_{f}$$

come a LEP

Mantenendo separate le diverse polarizzazioni

$$A_{mLR} = \left[\frac{\sigma_{L} - \sigma_{R}}{\sigma_{L} + \sigma_{R}}\right]_{P=P_{e}} = P_{e} A_{e}$$

$$A_{mLRFB} = \left[\frac{(\sigma_{FL}^{f} - \sigma_{BL}^{f}) - (\sigma_{FR}^{f} - \sigma_{BR}^{f})}{(\sigma_{FL}^{f} - \sigma_{BL}^{f}) + (\sigma_{FR}^{f} - \sigma_{BR}^{f})}\right]_{P=P_{e}} = \frac{3}{4} P_{e} A_{f}$$

$$A_{LRFB}^{f} = \frac{3}{4} A_{f}$$

$$A_{\text{LR}} = A_e$$

$$A_{\text{LRFB}}^f = \frac{3}{4} A_f$$

Misure di asimmetria a SLD

• $A_f con A_{LRFB}$

$$A_e = 0.1544 \pm 0.0060$$

 $A_{\mu} = 0.142 \pm 0.015$
 $A_{\tau} = 0.136 \pm 0.015$

combinate con A_e da A_{LR}

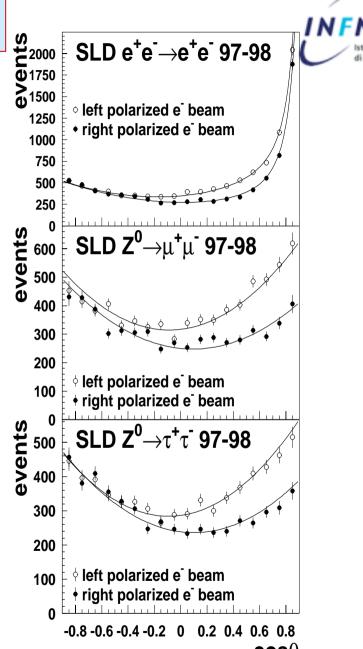
$$A_{LR}^{0} = 0.15130 \pm 0.00207$$

 $\sin^{2}\theta_{eff} = 0.23098 \pm 0.00026$

Dalle sole misure di asimmetria:

SLD
$$\sin^2 \theta_{eff} = 0.2310 \pm 0.0003$$

LEP^{leptoni}
$$\sin^2 \theta_{eff} = 0.2310 \pm 0.0005$$



Ezio Torassa

Asimmetrie Forward-Backward:

Z Physics at LEP I CERN 89-08 Vol 1 – Forward-backward asymmetries (pag. 203)

Fit globali

Measurement of the lineshape of the Z and determination of electroweak parameters from its hadronic decays - Nuclear Physics B 417 (1994) 3-57

Improved measurement of cross sections and asymmetries at the Z resonance - Nuclear Physics B 418 (1994) 403-427

Polarizzazione tau

Measurement of the τ polarization in Z decays – Z. Phys. C 67 183-201 (1995)