

Fisica delle alte energie agli acceleratori

Lezione #3

Ricerca di nuova fisica a LEP e LHC

Padova 10 Maggio 2010

Ezio Torassa

Il modello MSSM

Nel MS esiste il problema della divergenza ultravioletta della massa dell' Higgs: le correzioni radiative portano a divergenze fortemente dipendenti dal cut-off.

Rinormalizzazione della massa di:

$$m_{f} = \frac{\lambda_{f} v}{\sqrt{2}} \qquad \qquad \lambda_{u} = 2 \times 10^{-5} \quad \lambda_{c} = 9 \times 10^{-3} \quad \lambda_{t} = 1 \\ \lambda_{d} = 4 \times 10^{-5} \quad \lambda_{s} = 8 \times 10^{-4} \quad \lambda_{b} = 3 \times 10^{-2} \\ v = (\sqrt{2}\text{G})^{-1/2} = 246 \text{GeV} \qquad \lambda_{e} = 3 \times 10^{-6} \quad \lambda_{\mu} = 6 \times 10^{-4} \quad \lambda_{\tau} = 1 \times 10^{-2} \\ \text{v.e.v. of the Higgs field })$$

Considerando $\Lambda_{\rm UV}$ dell'ordine di M_{Plank} ~10^{19} GeV/c^2

- la correzione δm_f risulta piccola rispetto a m_f
- la correzione $\delta m_{\rm H}^2$ risulta da 22 a 34 ordini di grandezza superiore a $m_{\rm H}^2 \sim (100 \, \text{GeV/c}^2)^2$ essa è invece dell'ordine di $m_{\rm H}^2$ per un cut-off di circa 1TeV

Si noti che i termini di correzione per lo scalare sono simili a quelli per il loop di fermioni ma di segno opposto (ovviamente sostituendo $\lambda_f \operatorname{con} \lambda_s$). Supponendo che per ogni fermione esista un partner scalare (e viceversa) con la condizione $\lambda_s = \lambda_f^2$ tutti i termini dominanti si elidono.

Si introduce l'operatore di supersimmetria

S|Bosone > = |Fermione > S|Fermione > = |Bosone > |Fermione > |Fermione > |Bosone > |Fermione > |Fer

Si introducono le variabiali del superspazio $\theta \in \overline{\theta}$ in aggiunta alle coordinate spazio-temporali x_{μ} e supercampi che dipendono da queste variabili

Il MSSM è una supersimmentrizzazione del Modello Standard in cui si introcuce il numero minimale di supercampi

SM Particles	SUSY P	articles
quarks: q	q	squarks: \tilde{q}
leptons: l	1	sleptons: \tilde{l}
gluons: g	g	gluino: g
charged weak boson: W^{\pm}	W^{\pm}	Wino: \widetilde{W}^{\pm} ~=
Higgs: H [°]	H^{\pm} h^{0}, A^{0}, H^{0}	charged higgsino: \widetilde{H}^{\pm} neutral higgsino: $\widetilde{h}^{0}, \widetilde{A}^{0}, \qquad \qquad \widetilde{H}^{0}$ higgsino
neutral weak boson: Z^{0}	Z^{0}	Zino: \widetilde{Z}^{0} $\widetilde{\chi}^{0}_{1_{2,3,4}}$ neutralino
photon: γ	γ	photino: $\tilde{\gamma}$

Padova 10 Maggio 2010

Ezio Torassa

Nel Minimal SuperSymmetric Model vi sono due doppietti di Higgs:

1 Higgs doublet (e.g. SM)	$2~\mathrm{Higgs}$ doublets (e.g. MSSM)
$\phi = \begin{pmatrix} \phi^A \\ \phi^B \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$	$\phi = \begin{pmatrix} \phi^A \\ \phi^B \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$
	$\phi' = \begin{pmatrix} \phi^C \\ \phi^D \end{pmatrix} = rac{1}{\sqrt{2}} \begin{pmatrix} \phi_5 + i\phi_6 \\ \phi_7 + i\phi_8 \end{pmatrix}$
$4-3$ d.o.f. $\Rightarrow 1$ Higgs	$8-3$ d.o.f. $\Rightarrow 5$ Higgses
H^0	h^0, H^0, A^0, H^+, H^-

3 d.o.f. are needed to generate Z^0, W^+, W^- masses

A livello albero, tutte le masse sono determinate da solo due parametri, ad esempio: m_A , tan β rapporto tra i v.e.v: $\langle \phi \rangle / \langle \phi' \rangle$ massa dello pseudoscalare neutro

Padova 10 Maggio 2010

Ezio Torassa

$$m_{H^{\pm}}^{2} = m_{A^{0}}^{2} + m_{W^{\pm}}^{2}$$
$$m_{h^{0},H^{0}}^{2} = \frac{1}{2} \left(m_{A^{0}}^{2} + m_{Z^{0}}^{2} \mp \sqrt{(m_{A^{0}}^{2} + m_{Z^{0}}^{2})^{2} - 4m_{Z^{0}}^{2}m_{A^{0}}^{2}\cos^{2}2\beta} \right)$$

 $m_{h^0} < (m_{Z^0}, m_{A^0}) < m_{H^0}$

Parametri addizionali quali $M_{SUSY},\,M_2,\,\mu,\,A$, m_g , X_t rientrano a livello di correzioni radiative.

Padova 10 Maggio 2010

Ezio Torassa

Mixing dei fermioni supersimmetrici

Ogni fermione ha le componenti L e R ($f_{L,R}$).

Essi hanno distinti partner suppersimmetrici che chiameremo $\tilde{f}_{L,R}$ (anche se sono bosoni con spin 0).

Quesi s-fermioni hanno diverso spin isotopico (I=1/2, I=0) ma la simmetria può essere rotta e le loro componenti si possono mischiare.

$$M_{\tilde{f}}^2 \equiv \begin{pmatrix} m_{\tilde{f}_{LL}}^2 & m_{\tilde{f}_{LR}}^2 \\ m_{\tilde{f}_{LR}}^2 & m_{\tilde{f}_{RR}}^2 \end{pmatrix} \qquad \qquad m_{\tilde{f}_{L,R}}^2 = m_f \left(A_f + \mu_{\cot\beta}^{\tan\beta} \right) \quad \text{for} \quad f =_{u,c,t}^{e,\mu,\tau,d,s,b}$$

La parte fuori diagonale della matrice è proporzionale alla massa del fermione, il mixing ha dunque maggior inportanza per lo s-top

Padova 10 Maggio 2010

Ezio Torassa

Nel MSSM il potenziale di Higgs è invariante per CP a livello albero ma può perdere la simmetria a causa delle correzioni radiative. Nell'ipotesi di conservazione di CP gli autostati sono i campi h e H per CP pari ed A per CP dispari

Padova 10 Maggio 2010

Ezio Torassa

Produzione e decadimenti di higgs MSSM a LEP:

н

• largest at $an \beta > 15$

Padova 10 Maggio 2010

Ezio Torassa

Scenari MSSM

		Benchn	iark paramete	ers		
	(1) $m_{\rm h}$ -max	(2) no-mixing	(3) large-µ	(4) gluophobic	(5) small- α_{eff}	(6) <i>CPX</i>
416		Parameters	s varied in the	e scan		
$\tan\beta$	0.4-40	0.4-40	0.7-50	0.4-40	0.4 - 40	0.6-40
$m_{\rm A}~({\rm GeV}/c^2)$	0.1 - 1000	0.1 - 1000	0.1-400	0.1 - 1000	0.1 - 1000	÷#:
$m_{\mathrm{H}^{\pm}}~(\mathrm{GeV}/c^2)$			100	=	1970	4-1000
		Fixe	d parameters		<i></i>	×
$M_{\rm SUSY}$ (GeV)	1000	1000	400	350	800	500
M_2 (GeV)	200	200	400	300	500	200
μ (GeV)	-200	-200	1000	300	2000	2000
$m_{\tilde{g}} \; (\text{GeV}/c^2)$	800	800	200	500	500	1000
$X_{\rm t}~({\rm GeV})$	$2 M_{SUSY}$	0	-300	-750	-1100	$A - \mu \cot \beta$
A (GeV)	$X_t + \mu \cot \beta$	$X_t + \mu \cot \beta$	$X_t + \mu \cot \beta$	$X_{\rm t} + \mu \cot \beta$	$X_t + \mu \cot \beta$	1000
$\arg(A) = \arg(m_{\tilde{g}})$	Ħ	878	27	-	-	90°

Scenario m_h-max:

lo s-top mixing è impostato ad alti valori ($X_t = 2M_{SUSY})$ in modo da massimizzare il limite superioriore di m_h

Scenario no mixing:

 $X_t = 0$

Scenario ad alti µ:

sopprime i decadimenti $h{\rightarrow}$ bb e $h{\rightarrow}\tau\tau\,$ favorendo i decadimenti $h{\rightarrow}cc$, gg , WW

Scenario "gluophobic":

sopprime l'accoppiamento dell'higgs con i gluoni

Limiti di massa nell'ipotesi di conservazione di CP:

 $M_{h} > 85 \text{ GeV}$ $M_{A} > 93 \text{ GeV}$

In caso di violazione di CP indichiamo gli autostati neutri H1 , H2 e H3 per differenziarli dagli autostati di CP

I limiti di massa nell'ipotesi di violazione di CP sono aree complesse

Padova 10 Maggio 2010

Ezio Torassa

Ricerca di extra bosoni di gauge

Origine dello Z'

Z' è il nome generico di un nuovo bosone di gauge neutrale, puo' derivare da diversi modelli Sequential Standard Model: Z'_{SSM} Grand Unified Theories (GUT): $Z'_{\psi}, Z'_{\chi}, Z'_{\eta}, Z'_{I}$ Left-Right symmetric models: Z'_{LRM}, Z'_{ALRM} I modelli prevedono gli accoppiamenti, non la massa dello Z'

• GUT

I Gruppi E6 (ed il sottogruppo SO(10)) possono originare il gruppo G_{MS} attraverso i seguenti passi di rottura di simmetria: $E6 \rightarrow SO(10) \otimes U(1)_{\psi} \rightarrow SU(5) \otimes U(1)_{\chi} \otimes U(1)_{\psi} \rightarrow G_{MS} \otimes U(1)_{\chi} \otimes U(1)_{\psi}$ un bosone Z' puo' essere una combinazione dei campi $Z'_{\psi} e Z'_{\chi}$ $Z'(\theta) \equiv Z'_{\psi} \cos \theta + Z'_{\chi} \sin \theta$ $Z''(\theta) \equiv Z'_{\psi} \sin \theta - Z'_{\chi} \cos \theta$ $Z''(\theta) \equiv Z'_{\psi} \sin \theta - Z'_{\chi} \cos \theta$ $Z''(\theta) \equiv Z'_{\psi} \sin \theta - Z'_{\chi} \cos \theta$ $Z''(\theta) \equiv Z'_{\psi} \sin \theta - Z'_{\chi} \cos \theta$ $Z''(\theta) \equiv Z'_{\psi} \sin \theta - Z'_{\chi} \cos \theta$ $Z''(\theta) \equiv Z'_{\psi} \sin \theta - Z'_{\chi} \cos \theta$ $Z''(\theta) \equiv Z'_{\psi} \sin \theta - Z'_{\chi} \cos \theta$ $Z''(\theta) \equiv Z'_{\psi} \sin \theta - Z'_{\chi} \cos \theta$ $Z''(\theta) \equiv Z'_{\psi} \sin \theta - Z'_{\chi} \cos \theta$ $Z''(\theta) \equiv Z'_{\psi} \sin \theta - Z'_{\chi} \cos \theta$ $Z''(\theta) \equiv Z'_{\psi} \sin \theta - Z'_{\chi} \cos \theta$ $Z''(\theta) \equiv Z'_{\psi} \sin \theta - Z'_{\chi} \cos \theta$ $Z''(\theta) \equiv Z'_{\psi} \sin \theta - Z'_{\chi} \cos \theta$

• Parametri di generazione dello Z' in PYTHIA

PARU(121)-PARU(128)accoppiamenti 1ª gen. di quark e leptoni ($d_V d_A u_V u_A e_V e_A v_{eV} v_{eA}$)PARJ(180)-PARJ(187)accoppiamenti 2ª gen. di quark e leptoni ($s_V s_A c_V c_A \mu_V \mu_A v_{\mu V} v_{\mu A}$)PARJ(188)-PARJ(195)accoppiamenti 3ª gen. di quark e leptoni ($b_V b_A t_V t_A \tau_V \tau_A v_{\tau V} v_{\tau A}$)PMAS(32)massa Z'

• Sequential Standard Model

Gli accoppiamenti sono assunti essere uguali a quelli del bosone Z⁰ $2(I_{3f} - 2Q_f \sin^2 \theta_w)$ $C_{dv} = PARU(121) = C_{sv} = PARJ(180) = C_{bv} = PARJ(188) = -1 + 4/3 \sin^2 \theta_w$ $C_{dA} = PARU(122) = C_{sA} = PARJ(181) = C_{bA} = PARJ(189) = -1$ GUT

Gli accoppiamenti C_V e C_A sono diversi per ~ Z_{\psi} ~ Z_{\chi} ~ Z_{\eta} ~ Z_{I}

$$g_{\psi} = g_{\chi} = \sqrt{\frac{5}{3}} g_{Z^{0}} \sin \theta_{W} = \sqrt{\frac{5}{3}} \frac{e}{\cos \theta_{W}}$$

$$C_{dv} (Z_{\psi}) = 0$$

$$C_{dv} (Z_{\chi}) = 2/3 \sqrt{6} \sin \theta_{w}$$

$$C_{dv} (Z_{\eta}) = \sin \theta_{w}$$

$$C_{dv} (Z_{I}) = 1/3 \sqrt{15} \sin \theta_{w}$$

Viene esteso il gruppo del Modello Standard

- includendo i neutrini right-handed
- aggiungendo un gruppo di simmetria $U_{Y'}(1)$ che origina un bosone Z' i cui accoppiamenti con i fermioni possono essere o non essere universali

Rispetto ai precedenti modelli:

- l'accoppiamento non e' fissato
- prevede un possibile mixing Z Z'.

Y' = a Y + b X (X = B - L)

Parametri del modello: $m_{Z'}$ \tilde{g}_{Y} \tilde{g}_{B-L}

Padova 10 Maggio 2010

Ezio Torassa

Limiti attuali sui modelli Z'

I limiti indiretti dai dati di LEP sono ricavati dai fit elettrodeboli di Γ_z e A_{FB} Si ricavano limiti indiretti dello stesso ordine di quelli diretti

clo

Produzione di Z' a LHC

 $L = 2 \ 10^{33} \ cm^{-2} \ sec^{-1} = 2 \ nb^{-1} \ sec^{-1}$

	Events / seconds						
	1 TeV	3 TeV	5 TeV				
Z _{SSM}	0.032	0.013 10 ⁻²	0.023 10 ⁻⁴				
Zψ	0.006	0.002 10 ⁻²	0.004 10 ⁻⁴				
Ζη	0.009	0.003 10-2	0.006 10 ⁻⁴				
Zχ	0.010	0.003 10 ⁻²	0.005 10 ⁻⁴				
Z _{LRM}	0.027	0.010 10 ⁻²	0.017 10 ⁻⁴				
Z _{ALRM}	0.013	0.006 10 ⁻²	0.011 10 ⁻⁴				

Process	Events/s	Events/year
$W \rightarrow e\nu$	40	4×10^{8}
$Z \rightarrow ee$	4	4×10^{7}
tīt	1.6	1.6×10^{7}
$b\overline{b}$	10^{6}	10 ¹³
$\tilde{g}\tilde{g} \ (m = 1 \text{ TeV})$	0.002	2×10^{4}
Higgs $(m = 120 \text{ GeV})$	0.08	8×10^{5}
Higgs $(m = 800 \text{ GeV})$	0.001	10^{4}
$\widetilde{ m QCD}$ jets $p_{ m T} > 200~{ m GeV}$	10^{2}	10^{9}

 $L = 10^{32} \text{ cm}^{-2} \text{ sec}^{-1} = 0.1 \text{ nb}^{-1} \text{ sec}^{-1}$

	Events / year						
	1 TeV	3 TeV	5 TeV				
Z _{SSM}	50 10 ³	20 10 ¹	36 10 ⁻¹				
Zψ	9.5 10 ³	3 10 ¹	6 10 ⁻¹				
Ζη	14 10 ³	5 10 ¹	9 10 ⁻¹				
Zχ	16 10 ³	5 10 ¹	8 10 ⁻¹				
Z _{LRM}	42 10 ³	16 10 ¹	27 10 ⁻¹				
Z _{ALRM}	20 10 ³	9 10 ¹	17 10 ⁻¹				

Va poi considerato il BR che nel caso di $Z' \to \mu^+ \, \mu^- \, \text{ varia dal 3\% al 9\%}$

Padova 10 Maggio 2010

 $\mathcal{Z}' \rightarrow \mu^+ \mu^- a CMS$

• Il segnale

Il canale $Z' \rightarrow \mu \mu$ è stato considerato come riferimento per uno studio dettagliato nel Physics TDR di CMS.

Sono stati considerati sei possibili bosoni Z':

$$Z'_{SSM} \xrightarrow{Z'_{\psi}} Z'_{\chi} \xrightarrow{Z'_{\eta}} Z'_{LRM} \xrightarrow{Z'_{ALRM}}$$

La generazione di PYTHIA include le possibili interferenze $\gamma*$ / Z0 / Z' Sono state studiate tre diverse masse invarianti: 1 TeV , 3 TeV , 5 TeV

Model	Γ/M ,	$\operatorname{Br}(\mathbf{Z}' \to \mu^+ \mu^-),$	$\sigma^{LO} \cdot Br$, fb			$\sigma^{LO} \cdot E$	Br, full in	terference, fb
	%	%	(PYTHIA)				(PYTH	IIA)
			1 TeV	3 TeV	5 TeV	1 TeV	3 TeV	5 TeV
Z _{SSM}	3.1	3.0	480	1.9	0.034	610	2.8	0.050
Z_{ψ}	0.6	4.0	130	0.5	0.009	340	1.7	0.032
Z_{η}	0.7	3.4	150	0.6	0.011	370	1.8	0.035
Z_{χ}	1.3	5.7	280	1.0	0.014	500	2.2	0.038
Z_{LRM}	2.2	2.3	310	1.2	0.020	500	2.3	0.040
Z _{ALRM}	1.6	8.6	580	2.6	0.051	740	3.7	0.077

Le sezioni d'urto in tabella sono mostrate all'ordine LO. Sono state moltiplicate per un fattore k=1.35 per considerare le correzioni QCD all'ordine NNLO

 $\mathcal{Z}' \rightarrow \mu^+ \mu^- a CMS$

• Il fondo

Il fondo dominante (ed irriducibile) e' il Drell-Yan $Z/\gamma^* \rightarrow \mu^+\mu^-$. E' stato considerato all'ordine NNLO come il segnale Ulteriori contributi (ZZ, ZW, WW, tt) sono risultati essere trascurabili avendo sezioni di produzione molto piu' basse ed essendo riducibili con selezioni specifiche.

$DY \rightarrow \mu \mu$							
	Mass interval, TeV						
	> 0.2	> 0.4	> 1	> 1.5	> 2	> 3	
$\sigma_{\rm DY}^{\rm LO}$, fb	$2.5 \cdot 10^{3}$	220	6.6	1.1	0.24	0.020	

Model	σ (^{LO} · Br, 1 (PYTHIA	fb .)
	1 TeV	3 TeV	5 TeV
Z _{SSM}	480	1.9	0.034
Z_{ψ}	130	0.5	0.009
Z_{η}	150	0.6	0.011
Z_{χ}	280	1.0	0.014
Z_{LRM}	310	1.2	0.020
Z _{ALRM}	580	2.6	0.051

Padova 10 Maggio 2010

Ezio Torassa

Effetti disallineamento $Z' \rightarrow \mu^+ \mu^-$

Esempio di spettro Z η con M_{Z'} = 1 TeV con luminosita' integrata di 0.1 fb-1 PTDR V2 - CMS NOTE 2006/062

• significativita'

$$S_{\mathcal{L}} = \sqrt{2 \ln(\mathcal{L}_{s+b} / \mathcal{L}_{b})}$$

	Long term scenario				
	Ļ	Ļ	↓ ↓		
Mass	1 TeV/c ²	3 TeV/c ²	5 TeV/c ²		
$\int \mathcal{L} dt$	$0.1 {\rm fb}^{-1}$	10 fb ⁻¹	$300 {\rm fb}^{-1}$		
$Z_{\rm SSM}$	12.4 ± 0.2	10.1 ± 0.2	5.8 ± 0.1		
Z_{ψ}	5.1 ± 0.2	4.4 ± 0.1	2.4 ± 0.2		
Z_{η}	5.5 ± 0.2	5.1 ± 0.1	2.9 ± 0.1		
Z_{χ}	9.1 ± 0.2	6.7 ± 0.2	3.2 ± 0.1		
Z_{LRM}	9.0 ± 0.2	7.4 ± 0.2	4.1 ± 0.1		
Z_{ALRM}	13.3 ± 0.3	11.8 ± 0.2	7.7 ± 0.2		

Padova 10 Maggio 2010

Ezio Torassa

Asimmetria forward backward

$$\frac{d\sigma_{f\bar{f}}}{d\Omega} \propto \frac{1}{2} (1 + \cos^2 \vartheta^*) + A_{FB} \cos \vartheta^*$$

 θ^* angolo tra $\mu^-\,$ e quark incidente nel riferimento della coppia di μ

Nelle interazione p-p vi sono elementi di incertezza:

- 1) da quale protone e' derivato il quark e da quale l'antiquark ?
- 2) nel riferimento della Z' i due protoni non risultano piu' collineari, l'angolo θ^* non e' determinabile in modo preciso.

Si assume che:

- la direzione sull'asse z della Z' determini la direzione del quark, dunque il segno di θ^{*}. La frazione dei casi in cui l'ipotesi non è corretta produce una diluizione dell'asimmetria
- 2) l'angolo sia in approssimazione quello tra i leptoni ed il piano dei protoni nel riferimento della Z' (Collin-Soper frame).

Padova 10 Maggio 2010

Ezio Torassa

Distinzione tra diversi modelli: \mathcal{A}_{FB}

Tabelle di significatività per confronto tra coppie di Z'

 $M_{Z'} = 1 \text{ TeV}$ L = 10 fb⁻¹

 Z_{χ} Z_{η} Z_{ψ} Z_{LRM} Model Zalrm Zssm Z_{ALRM} 0.05.36.6 7.69.4_ Z_{γ} 3.7 5.30.04.66.6_ Z_{η} 2.72.60.71.22.1_ Z_{ψ} 3.33.30.71.40.5_ Z_{SSM} 6.86.82.10.91.6_ Z_{LRM} 3.0 6.86.82.11.3_

 $M_{Z'} = 3 \text{ TeV}$ L = 400 fb⁻¹

Model	ZALRM	Z_{χ}	Z_{η}	Z_{ψ}	$\mathbf{Z}_{\mathbf{SSM}}$	Z_{LRM}
$\mathbf{Z}_{\mathrm{ALRM}}$	-	0.3	2.5	3.0	3.2	4.2
Z_{χ}	0.2	-	1.4	1.7	1.8	2.4
Z_{η}	1.2	1.0	-	0.3	0.4	0.8
$\mathbf{Z}_{\boldsymbol{\psi}}$	1.4	1.3	0.3	-	0.1	0.5
$\mathbf{Z}_{\mathrm{SSM}}$	2.7	2.5	0.6	0.2	-	0.8
Z_{LRM}	2.8	2.6	1.1	0.8	0.6	_

Spin-0	$\operatorname{Spin}_{\frac{1}{2}}$	Spin-1	Colore	Q	В	L
$ \begin{array}{ccc} \tilde{u}_1, & \tilde{u}_2 \\ \tilde{d}_1, & \tilde{d}_2 \\ & \tilde{\nu} \\ \tilde{e}_1, & \tilde{e}_2 \end{array} $	u d ν e		3 3 1 1	$+\frac{2}{3}$ $-\frac{1}{3}$ 0 -1	$ \frac{\frac{1}{3}}{\frac{1}{3}} \frac{1}{0} 0 $	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$
H^- h, H, A	$egin{array}{c} & \tilde{g} \\ & ilde{\chi}_1^-, \ ilde{\chi}_2^- \\ & ilde{\chi}_1^0, \ ilde{\chi}_2^0, \ ilde{\chi}_3^0, \ ilde{\chi}_4^0 \end{array}$	$g \\ W^- \\ Z^0, \ \gamma$	8 1 1	$ \begin{array}{c} 0 \\ -1 \\ 0 \end{array} $	0 0 0	0 0 0

Contenuto di particelle del MSSM: autostati di massa. (Non sono incluse la seconda e terza generazione di fermioni e gli autostati di antiparticella.)

Padova 10 Maggio 2010

Ezio Torassa

New Physics

I partner supersimmetrici di quark e gluoni, dato che hanno carica di colore, sono le particelle SUSY prodotte con maggior abbondanza a LHC

 $\begin{array}{l} \tilde{q}\overline{\tilde{q}} \rightarrow q\tilde{\chi} \ \overline{q}\tilde{\chi} \\ \tilde{q}\tilde{g} \rightarrow q\tilde{\chi} \ q\overline{q}\tilde{\chi} \\ \tilde{g}\tilde{g} \rightarrow q\overline{q}\tilde{\chi} \ q\overline{q}\tilde{\chi} \end{array}$

at least two high E_T jets at least three high E_T jets at least four high E_T jets

'orassa

Il segnale viene studiato per diversi punti di riferimento LM1-LM2- ecc..

che definiscono diversi valori di massa delle particelle più leggere

Sample	m_0	$m_{1/2}$	A_0	tan β	sign(µ)	σ NLO	(LO)	lightest q	χ_1^0
1	(GeV)	(GeV)			0	(pb)	(pb)	(GeV)	(GeV)
LM1	60	250	0	10	+	54.86	(43.28)	$410(t_1)$	97
LM2	185	350	0	35	+	9.41	(7.27)	582 (\tilde{t}_1)	141
LM3	330	240	0	20	+	45.47	(34.20)	446 (t_1)	94
LM4	210	285	0	10	+	25.11	(19.43)	483 (t ₁)	112

Padova 10 Maggio 2010

Ezio Torassa

Selection cut	QCD	tī,W,Z	$Z \rightarrow \nu \bar{\nu}$	LM1
Trigger	1.1×10^8	147892	1807	25772
Preselection	$3.4 imes10^7$	9820	878	2408
$\rm HT > 500 GeV$	$3.2 imes10^6$	2404	243	1784
$\alpha > 0.55$	0	7.2	19.7	227.6
$\alpha_{\rm T} > 0.55$	0	19.9	58.2	439.6
$\Delta \phi_{ m j1,j2} < 2\pi/3$	0	18.7	57.2	432.4

q̃ q̃ (other)

22%

33%

17%

10%

q̃ q̃ (invisible)

39%

46%

69%

49%

Segnale e fondo attesi a fine selezione per una luminosità integrata di 1 fb⁻¹

other	
1%	Per il punto di riferimento LM1 si
2%	può evidenziare un segnale MSSM
2%	già con le prime collisioni a LHC
1%	

Padova 10 Maggio 2010

Events

432

132

138

195

Sample

LM1

LM2

LM3

LM4

Ezio Torassa

ĝĝ

3%

0%

0%

3%

q ĝ

34%

18%

12%

36%

Produzione MSSM Higgs neutriGluon fusion $pp \rightarrow gg \rightarrow h, H, A$ Produzione MSSM Higgs carichiProd. ass. con quark pesanti $pp \rightarrow qq/gg \rightarrow H\pm + tb$

L'Higgs neutro MSSM ($85 \text{ GeV} < m_h < 130 \text{ GeV}$) presenta dunque le stesse difficoltà dell'Higgs SM a bassa massa ma presenta anche altre opportunità: la produzione associata bb ϕ ($\phi = H/A$) risulta favorita ad alti valori di tan β ed il doppio b-tag aiuta nella selezione del segnale.

> • $\tan\beta > 15$: - $b\bar{b}$ H/A H/A $\rightarrow b\bar{b}$ - $b\bar{b}$ H/A H/A $\rightarrow \tau^+\tau^-$ - $b\bar{b}$ H/A H/A $\rightarrow \mu^+\mu^-$

• $\tan\beta < 15$: $-A \rightarrow Zh \rightarrow ll bb$ $-H/A \rightarrow \chi^{0}_{2} \chi^{0}_{2} \rightarrow 4l + Miss ET$

Ezio Torassa

La produzione associata bb ϕ ad alti valori di tan β permette di studiare anche canale soppresso come $\phi \rightarrow \mu\mu$ (B.R. ~ 10⁻⁴)

Masse e larghezze dei bosoni di Higgs possono essere ricostruiti molto precisamente Il problema principale dell'analisi è l'incertezza delle sezioni d'urto del segnale e del Drell Yan.

La misura della larghezza permette di mettere dei limiti su tan β

Area di significatività > 5 nel piano (M_A , $tan\beta$) per 30 fb^{-1}

 $pp \rightarrow bb\phi, \phi \rightarrow \tau \tau$

bb H/A $\rightarrow \tau\tau \rightarrow e + \mu + X$ bb H/A $\rightarrow \tau\tau \rightarrow e + jet + X$ bb H/A $\rightarrow \tau\tau \rightarrow \mu + jet + X$ bb H/A $\rightarrow \tau\tau \rightarrow jet + jet + X$

Area di significatività > 5 nel piano (M_A , $tan\beta$) per 30 $fb^{\text{-1}}$

Il canale in $\tau\tau$ permette di accedere anche alla regione con alti valori di M_A

Padova 10 Maggio 2010

Ezio Torassa

Accesso ai bassi tan β con A/H $\rightarrow \chi_2^0 \chi_2^0 \rightarrow 4l + E_T^{miss}$

 $(\chi_2^0 \rightarrow l^+ l^- \chi_1^0)$

Si considerano alcuni punti di riferimento

Point	m_0 (GeV)	$m_{1/2} ({\rm GeV})$	A_0 (GeV)	$tan\beta$	$sign(\mu)$
А	60	175	0	10	+
В	80	200	0	5	+
С	50	150	0	5	+

 $m_{\parallel\parallel}$ (GeV/c²)

Ha un importante contributo di fondo SUSY dovuto al decadimento in leptoni di squark e gluini

- Fondo
 - SUSY, SM: tt, ZZ, Zbb
- Selezione:
 - pT > 7 GeV (e) $5 GeV(\mu)$
 - Isolamento leptoni
 - Jet veto
 - ET^{miss} e pT4l < 80 GeV
 - Z veto

Ezio Torassa

Dottorato in Fisica XXV Ciclo

di Fisica Nucleare

 H^{\pm}

L'higgs MSSM carico decade

in the d in τv

con percentuali dipendenti dalla massa e da tang β

Padova 10 Maggio 2010

Ezio Torassa

MSSM Higgs Boson a LEP:

MSSM higgs Boson Searches at LEP – hep-ph/0602136 (SUSY'05 Conference)

Ricerca di extra bosoni di gauge

Phys.Rev.Lett.102:091805,2009 A Search for high-mass resonances decaying to dimuons at CDF

SUSY

SUSY searches with dijet events CMS PAS SUS-08-005 CMS Physics TDR, Volume II: <u>CERN-LHCC-2006-021</u>, 25 June 2006