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Topics

1) Introduction; + 
Learning to love the Error Matrix

2) Do’s and Dont’s with Likelihoods

3) Discovery and p-values

Time for discussion
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Some of the questions to be addressed
What is coverage, and do we really need it?
Should we insist on at least a 5σ effect to claim  

discovery?
How should p-values be combined? 
If two different models both have respectable χ2

probabilities, can we reject one in favour of other?
Are there different possibilities for quoting the 

sensitivity of a search?
How do upper limits change as the number of 

observed events becomes smaller than the 
predicted background?

Combine 1 ± 10 and 3 ± 10 to obtain a result of 6 ± 1?
What is the Punzi effect and how can it be 

understood?
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Books

Statistics for Nuclear and Particle Physicists
Cambridge University Press, 1986

Available from CUP

Errata in these lectures
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Other Books

CDF Statistics Committee

BaBar Statistics Working Group
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Introductory remarks
Probability and Statistics

Random and systematic errors

Conditional probability

Variance

Combining errors

Combining experiments

Binomial, Poisson and Gaussian distributions
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Parameter Determination

Goodness of fit

Hypothesis testing

THEORY� DATA                DATA� THEORY

N.B. Parameter values not sensible if goodness of 
fit is poor/bad
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Why do we need errors?

Affects conclusion about our result e.g.
Result / theory = 0.970

If 0.970 ± 0.050, data compatible with theory
If 0.970 ± 0.005, data incompatible with theory
If 0.970 ± 0.7, need better experiment

Historical experiment at Harwell testing General 
Relativity
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Random + Systematic Errors
Random/Statistical: Limited accuracy, Poisson counts   

Spread of answers on repetition (Method of estimating)
Systematics: May cause shift, but not spread 

e.g. Pendulum       g = 4π2L/τ2,        τ = T/n
Statistical errors:  T, L
Systematics:        T, L

Calibrate:  Systematic � Statistical
More systematics:
Formula for undamped, small amplitude, rigid, simple pendulum
Might want to correct to g at sea level:

Different correction formulae

Ratio of g at different locations:   Possible systematics might cancel.
Correlations relevant
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Presenting result

Quote result as g ± σstat ± σsyst

Or combine errors in quadrature � g ± σ

Other extreme: Show all systematic contributions separately
Useful for assessing correlations with other measurements
Needed for using:

improved outside information, 
combining results
using measurements to calculate something else. 
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Bayes’
Theorem
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Combining errors
z = x - y

δz = δx – δy [1]
Why   σz

2 = σx
2 + σy

2 ?  [2]
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Combining errors
z = x - y

δz = δx – δy [1]
Why   σz

2 = σx
2 + σy

2 ?  [2]

1) [1] is for specific δx,  δy
Could be                           so on average                ? 

N.B. Mneumonic, not proof 

2) σz
2 = δz2 = δx2 + δy2 – 2 δx δy

= σx
2 + σy

2 provided…………..
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3) Averaging is good for you:      N measurements  xi ± σ

[1] xi ± σ or   [2] xi ± σ/√N ?

4) Tossing a coin:

Score 0 for tails, 2 for heads     (1 ± 1)

After 100 tosses, [1] 100 ± 100      or      [2] 100 ± 10    ?

0        100       200

Prob(0 or 200) = (1/2)99 ~ 10-30

Compare age of Universe  ~ 1018 seconds
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Rules for different functions

1) Linear:  z = k1x1 + k2x2 + …….
σz = k1 σ1 & k2 σ2

& means “combine in quadrature”

N.B. Fractional errors NOT relevant

e.g. z = x – y
z = your height
x = position of head wrt moon
y = position of feet wrt moon

x and y measured to 0.1%

z could be -30 miles
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Rules for different functions

2) Products and quotients

z = xα yβ…….

σz/z = α σx/x &  β σy/y

Useful for x2, xy,  x/y,…….
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3) Anything else:

z = z(x1, x2, …..)

σz = ∂z/∂x1 σ1 & ∂z/∂x2 σ2 & …….

OR numerically:

z0 = z(x1,    x2,     x3….)

z1 = f(x1+σ1, x2,     x3….)
z2 = f(x1,     x2+ σ2,     x3….)

σz = (z1-z0) & (z2-z0) & ….

N.B. All formulae approximate (except 1)) – assumes small errors
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Introductory remarks
Probability and Statistics

Random and systematic errors

Conditional probability

Variance

Combining errors

Combining experiments

Binomial, Poisson and Gaussian distributions
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To consider……

Is it possible to combine 
1 ± 10    and 2 ± 9

to get a best combined value of 

6 ± 1    ?

Answer later.
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Difference between averaging and adding

Isolated island with conservative inhabitants
How many married people ?

Number of married men      = 100 ± 5 K
Number of married women =   80 ± 30 K

Total = 180 ± 30 K
Wtd average =   99 ± 5 K                    CONTRAST

Total = 198 ± 10 K

GENERAL POINT: Adding (uncontroversial) theoretical input can 
improve precision of answer
Compare “kinematic fitting”
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Binomial Distribution

Fixed N independent trials, each with same prob of 
success p

What is prob of s successes?
e.g. Throw dice 100 times. Success = ‘6’. What is 

prob of 0, 1,…. 49, 50, 51,… 99, 100  successes?
Effic of track reconstrn = 98%. For 500 tracks, 

prob that 490, 491,...... 499, 500 reconstructed.
Ang dist is 1 + 0.7 cosθ? Prob of 52/70 events 

with cosθ > 0 ?

(More interesting is statistics question)
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Ps =           N!     ps (1-p) N-s  , as is obvious

(N-s)! s!

Expected number of successes = ΣnPn = Np,

as is obvious

Variance of no. of successes = Np(1-p)

Variance ~ Np, for p~0

~ N(1-p) for p~1

NOT Np in general.   NOT n ±√n

e.g. 100 trials, 99 successes,  NOT 99 ± 10
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Statistics: Estimate p and σp from s (and N)

p  = s/N

σp
2 = 1/N s/N (1 – s/N)

If s = 0, p = 0 ± 0 ?

If s = 1,  p = 1.0 ± 0 ?

Limiting cases:

● p = const, N� ∞:  Binomial � Gaussian

µ = Np, σ2 = Np(1-p)

● N� ∞, p�0, Np = const:    Bin � Poisson

µ = Np, σ2 = Np

{N.B. Gaussian continuous and extends to -∞}
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Poisson Distribution
Prob of n independent events occurring in time t when rate 

is r (constant)
e.g. events in bin of histogram
NOT Radioactive decay for t ~ τ
Limit of Binomial (N�∞, p�0, Np�µ)

Pn = e-r t (r t)n /n!   = e -µ µn/n!   (µ = r t)

<n> = r t = µ (No surprise!)

σ 2
n = µ “n ±√n” BEWARE 0 ± 0 ?

µ�∞: Poisson� Gaussian, with mean = µ, variance =µ

Important for χ2
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For your thought

Poisson  Pn = e -µ µn/n!

P0 = e–µ P1 = µ e–µ P2 = µ2 /2 e-µ

For small µ,  P1 ~ µ,     P2 ~ µ2/2

If probability of 1 rare event ~ µ, 

why isn’t probability of 2 events ~ µ2 ?
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P2 = µ2 e-µ or P2 = µ2 /2 e-µ ?

1) Pn = e -µ µn/n! sums to unity
2) n! comes from corresponding Binomial factor N!/{s!(N-s)!}
3) If first event occurs at t1 with prob µ, average prob

of second event in t-t1 is µ/2. (Identical events)
4) Cow kicks and horse kicks, each producing scream.
Find prob of 2 screams in time interval t, by P2 and P2

2c, 0h               (c2e-c) (e-h)              (½ c2e-c) (e-h)
1c,1h                (ce-c) (he-h)             (ce-c) (he-h)
0c,2h                (e-c) (h2e-h)              (e-c) (½ h2e-h)
Sum          (c2 + hc + h2) e-(c+h)      ½(c2 + 2hc + h2) e-(c+h)

2 screams     (c+h)2 e-(c+h)                   ½(c+h)2 e-(c+h)

Wrong                          OK
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Relation between Poisson and Binomial

!!

!

fm

N

Other particlesProtonsCosmic rays

BackwardsForwardsDecaying 
nuclei

Remain illCured Patients

FemaleMale People

N people in lecture,     m males     and     f females          (N = m + f )

Assume these are representative of basic rates:   ν people     νp males      ν(1-p) females

Probability of observing N people  =  PPoisson = e–ν ν N /N!

Prob of given male/female division = PBinom =           pm (1-p)f

Prob of N people, m male and f female  =     PPoissonPBinom

=      e–νp νm pm *            e-ν(1-p) νf (1-p)f

m!                                           f !

= Poisson prob for males   *   Poisson prob for females
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Gaussian or 
Normal
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0.002
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Relevant for Goodness of Fit
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Gaussian = N (r, 0, 1)

Breit Wigner = 1/{π * (r2 + 1)}
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Learning to love the Error Matrix

• Introduction via 2-D Gaussian
• Understanding covariance
• Using the error matrix

Combining correlated measurements
• Estimating the error matrix
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a

b

x

y
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Correlations

Basic issue:
For 1 parameter, quote value and error
For 2 (or more) parameters, 

(e.g. gradient and intercept of straight line fit) 
quote values + errors  + correlations

Just as the concept of variance for single variable is more 
general than Gaussian distribution, so correlation in 
more variables does not require multi-dim Gaussian

But more simple to introduce concept this way



43

Element Eij - <(xi – xi) (xj – xj)>

Diagonal Eij = variances

Off-diagonal Eij = covariances
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Small error

Example: Chi-sq Lecture 

xbest outside x1 � x2
ybest outside y1 � y2
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a

b

x

y
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Conclusion

Error matrix formalism makes 
life easy when correlations are 
relevant
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Next time: Likelihoods

• What it is
• How it works: Resonance
• Error estimates
• Detailed example: Lifetime
• Several Parameters
• Extended maximum L

• Do’s and Dont’s with L ����������������


