Do's and Dont's with Likelihoods

Louis Lyons
IC and Oxford
CDF and CMS

Padova, May 2010

Topics

What it is

How it works: Resonance

Error estimates

Detailed example: Lifetime

Several Parameters

Extended maximum £

DO'S AND DONT'S WITH &

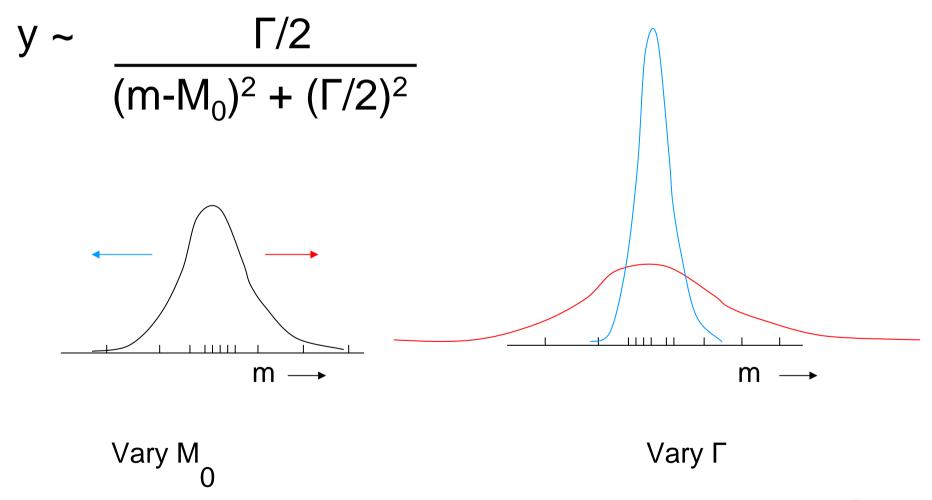
- NORMALISATION FOR LIKELIHOOD
- JUST QUOTE UPPER LIMIT
- $\Delta(\ln \mathcal{L}) = 0.5 \text{ RULE}$
- \mathcal{L}_{max} AND GOODNESS OF FIT

$$\bullet \int_{p_L}^{p_U} \mathcal{L} dp = 0.90$$

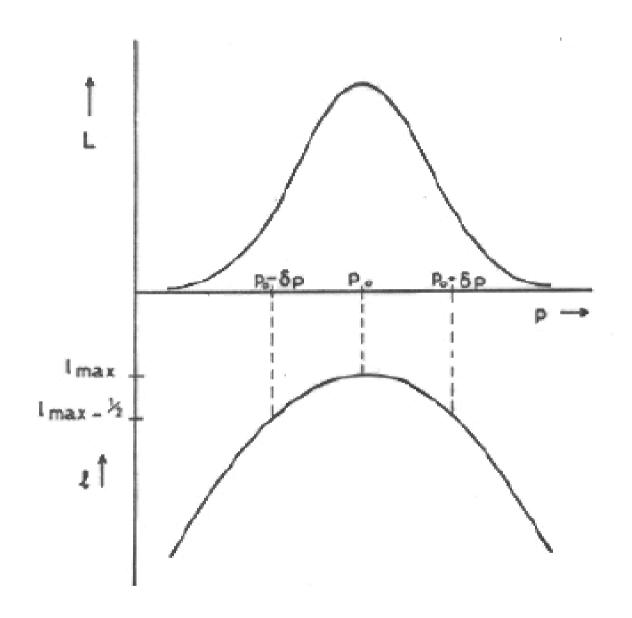
- BAYESIAN SMEARING OF £
- USE CORRECT £ (PUNZI EFFECT)

MAXIMUM LIKEZI HOOD 4 = N (1+ 2 cos 20) y = N (1+ 2 w20) ~ Probability of observing Di, given 6/a $\mathcal{L}(\frac{b}{a}) = T y_i$ - Probability of observing given set of D. for that b/a Best estimate of a is that which maxim was & Precision of a from width of at distribution Cas 8 Cos 8

How it works: Resonance



Conventional to consider e - en(x) = Ilmy; For large N , & -> Garysian "Proof" Toylor expand I close to accimum $l = l_{max} + \frac{1}{2!} l'' \left[\delta \left(\frac{6}{a} \right) \right]^2 + \cdots$ = lm m - 1 5 + ... => L ~ exp (- 52)



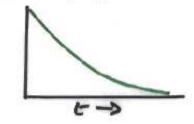
Maximum likelihood error

Range of likely values of param μ from width of \mathcal{L} or 1 dists. If $\mathcal{L}(\mu)$ is Gaussian, following definitions of σ are equivalent: 1) RMS of $\mathcal{L}(\mu)$

- 2) $1/\sqrt{(-d^2 \ln \mathcal{L}/d\mu^2)}$ (Mnemonic)
- 3) $ln(\mathcal{L}(\mu_0 \pm \sigma) = ln(\mathcal{L}(\mu_0))$ -1/2 If $\mathcal{L}(\mu)$ is non-Gaussian, these are no longer the same

"Procedure 3) above still gives interval that contains the true value of parameter μ with 68% probability"

Errors from 3) usually asymmetric, and asym errors are messy. So choose param sensibly e.g 1/p rather than p; τ or λ



Observe ti, to th

$$\frac{\partial L}{\partial z} = \sum (+ \frac{t}{N}z^2 - \frac{1}{z}) = 0 = \frac{\sum t}{z^2} - \frac{N}{z}$$

$$\Rightarrow \tau = \sum t \cdot /N = t \cdot 0$$

$$\frac{\partial \mathcal{L}}{\partial z_{1}} = -\sum_{i=1}^{2^{n}} + \sum_{i=1}^{2^{n}} + \sum_{i=1}^{2^{n}} = -2\sum_{i=1}^{N} + \frac{N}{2^{n}} = -\frac{N}{2^{n}}$$

$$\Rightarrow \quad \sigma_{z} = 1/\sqrt{-\frac{NN}{2^{n}}} = 2/\sqrt{N}$$

N.B. i) Usual 1/TN behaviour

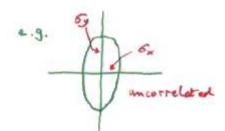
BEWARE FOR AVERAGING RESOLTS

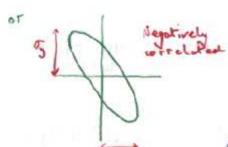
In z - In Inox = Universal Fr of z/znew 1(2) = I-ti/c - Nh 2 1(x)-1(xmx) = - Nxmx/x-Nht = N[1+ ln (2mos/2)-2ms/2) .. For given N , 5, 4 6. are defined (~ That as N+00) For small N , 5, > 5 l(2m) = -N(1+ ln E) N. B. I (2 ms) depends only on E, bur not on distribution of ti Relevant for whether I may is useful for testing goodness of fit

Several Parameters

| farm |
$$\frac{\partial L}{\partial p} = 0$$

$$\sigma_{p}^{2} = \frac{1}{(-\frac{\partial^{2}L}{\partial p^{2}})}$$





EXTENDED MAXIMUM LIKEZIHOOD Maximum Likelihood uses shape = > params Extended Max Like uses shape + normalisation ie. EML uses prob of 1) obsetting sample size of N events a 2) given distribution in K. -> shape farmeter a normalisation Example 1: Angular distribution Observe N events total 001 6.0 F forward 96 B barbe word EML ML Rate estimates 100 ±10 Total Forward 96±2 96 ± 10 4 ± 2 Barkword 4±2

ML & EML Maximum likelihood uses fixed normalisation Extended Max Like has normalisation as farameter e.g.l. Decay of resonance Use M. L for Branching Ratios Use EML for Partial Decay Rates E.g. 2 Cosmic tay experiment See 96 protos a 4 heavy mulai M.L estimate 96 ± 2% portos 4 ± 2% heavy

EML estimate 96 ± 10 protons 4 ± 2 heavy

a) Mar like Prob for fixed N = Binomial

Prob for fixed N = Binomial

FI B!

FI B! Maximise hP with = F/N Eriot a f: 1/02 = - 32 lm Pa $\approx \frac{N}{\hat{f}(l-\hat{f})} \qquad \qquad \hat{f} = \hat{f}$ => Estimate of F = NF = F± FE/N = Conflictely B = N(1-f) = B = [FB/N = anti-corr b) EML $P_s = P_a \times \frac{e^{-y}}{N!}$ Presson for overall rate Maxing ise In P. (v. +) $\hat{f} = N \pm \sqrt{N}$ uncorrelated $\hat{f} = \sqrt{f(1-f)} = \text{uncorrelated}$ For $\hat{F} = \hat{g}$, eiter propagate errors for $\hat{F} = \hat{g}\hat{f}$ $= \hat{g}\hat{f}$ $= \hat{g}\hat{f}$ $= \hat{g}\hat{f}$ OF FENNE egn # as product of 2 indep $\hat{F} = F \pm JF$ $\hat{B} = B \pm JE$

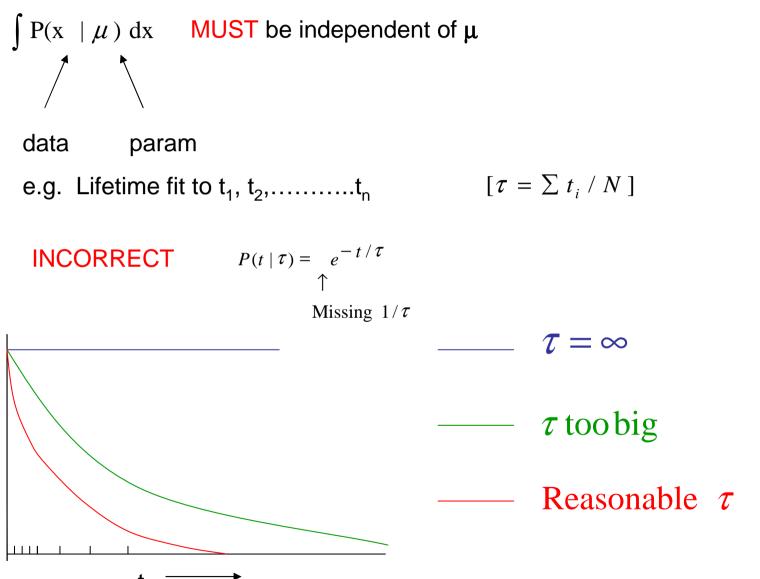
DO'S AND DONT'S WITH &

- NORMALISATION FOR LIKELIHOOD
- JUST QUOTE UPPER LIMIT
- $\Delta(\ln \mathcal{L}) = 0.5 \text{ RULE}$
- \mathcal{L}_{max} AND GOODNESS OF FIT

$$\bullet \int_{p_L}^{p_U} \mathcal{L} dp = 0.90$$

- BAYESIAN SMEARING OF £
- USE CORRECT £ (PUNZI EFFECT)

NORMALISATION FOR LIKELIHOOD



2) QUOTING UPPER LIMIT

"We observed no significant signal, and our 90% confupper limit is"

Need to specify method e.g.

L

Chi-squared (data or theory error)

Frequentist (Central or upper limit)

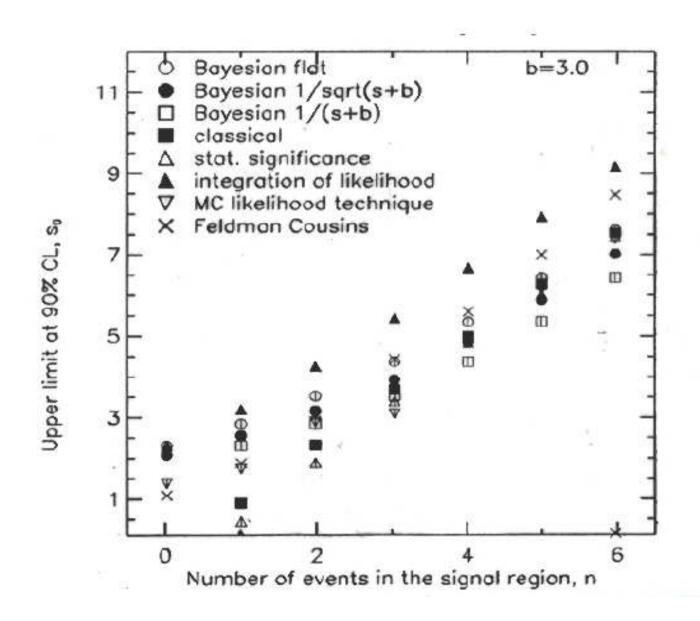
Feldman-Cousins

Bayes with prior = const, $1/\mu$ $1/\sqrt{\mu}$ μ etc

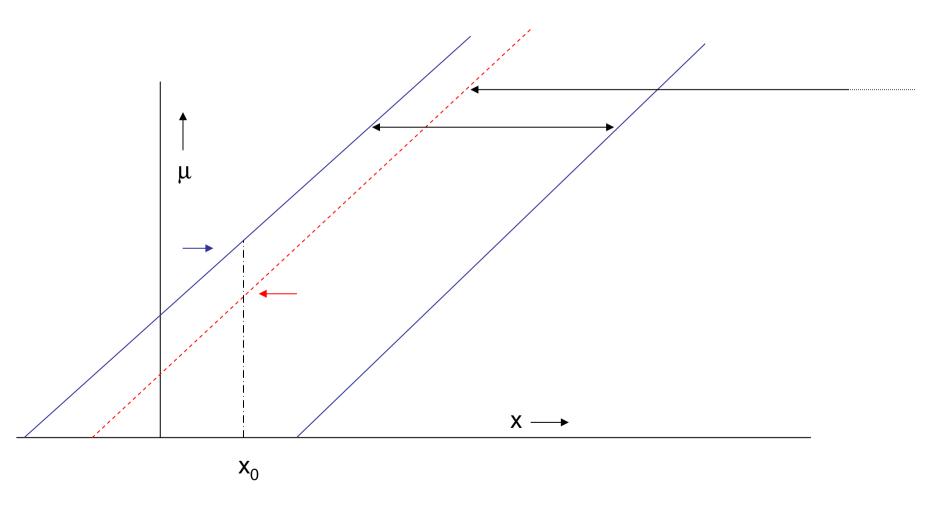
"Show your *L*"

- 1) Not always practical
- 2) Not sufficient for frequentist methods

Ilya Narsky, FNAL CLW 2000



90% C.L. Upper Limits



$\Delta \ln \mathcal{L} = -1/2 \text{ rule}$

If $\mathcal{L}(\mu)$ is Gaussian, following definitions of σ are equivalent:

- 1) RMS of $\mathcal{L}(\mu)$
- 2) $1/\sqrt{(-d^2 \mathcal{L}/d\mu^2)}$
- 3) $ln(\mathcal{L}(\mu_0 \pm \sigma) = ln(\mathcal{L}(\mu_0)) 1/2$

If $\mathcal{L}(\mu)$ is non-Gaussian, these are no longer the same

"Procedure 3) above still gives interval that contains the true value of parameter μ with 68% probability"

Heinrich: CDF note 6438 (see CDF Statistics Committee Web-page)

Barlow: Phystat05

COVERAGE

How often does quoted range for parameter include param's true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with μ

Study coverage of different methods of Poisson parameter μ , from observation of number of events n

COVERAGE

If true for all μ : "correct coverage"

P< α for some μ "undercoverage" (this is serious!)

 $P>\alpha$ for some μ "overcoverage"

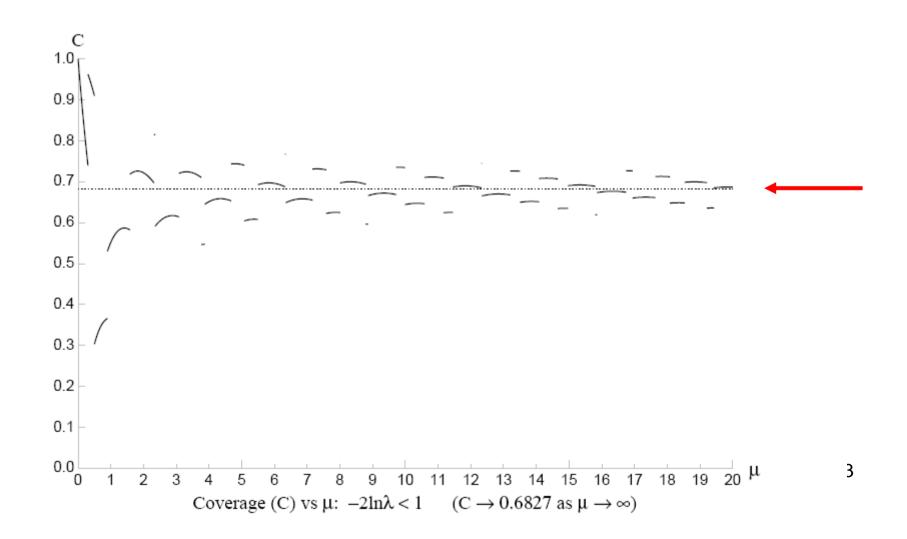
Conservative

Loss of rejection power

Coverage: £ approach (Not frequentist)

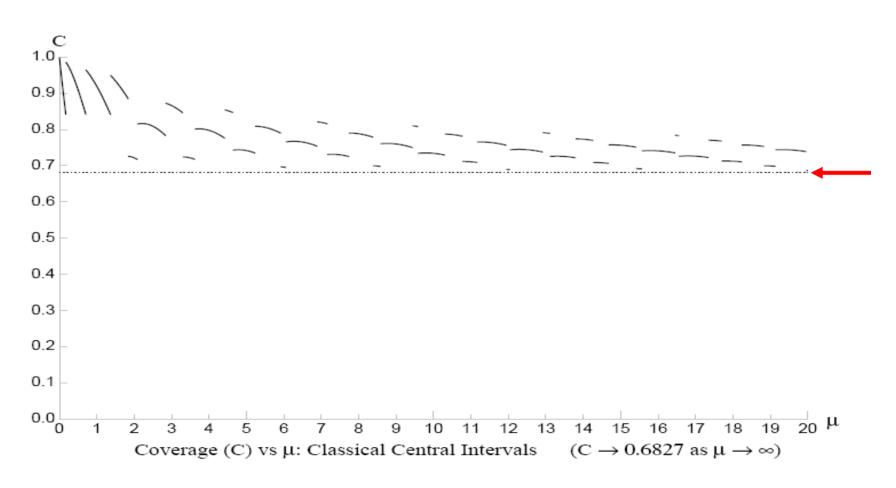
 $P(n,\mu) = e^{-\mu}\mu^n/n!$ (Joel Heinrich CDF note 6438)

$$-2 \ln \lambda < 1$$
 $\lambda = P(n,\mu)/P(n,\mu_{best})$ UNDERCOVERS



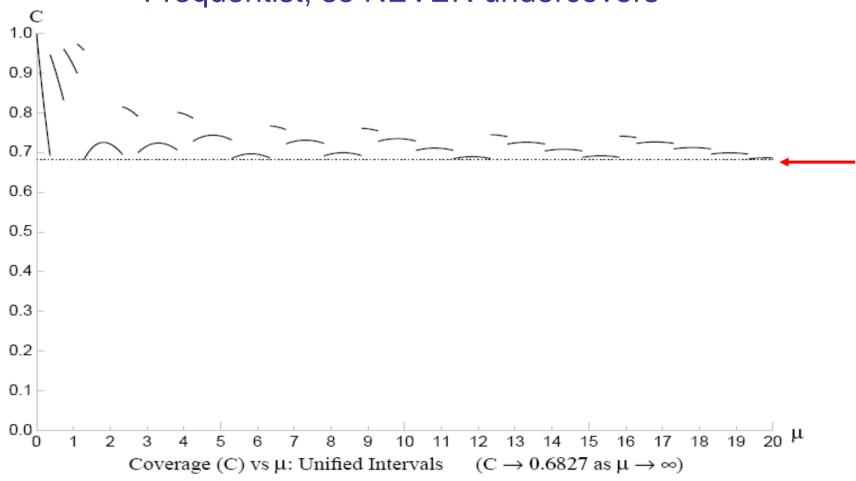
Frequentist central intervals, NEVER undercovers

(Conservative at both ends)

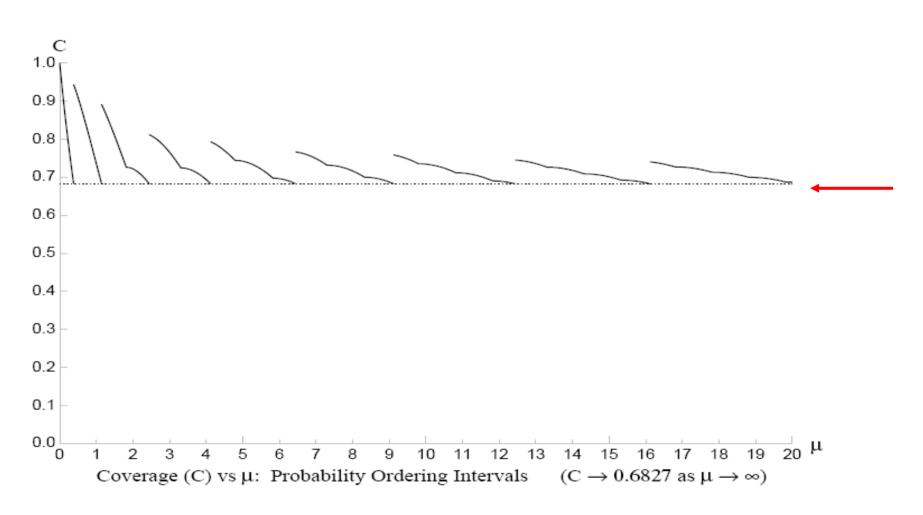


Feldman-Cousins Unified intervals

Frequentist, so NEVER undercovers

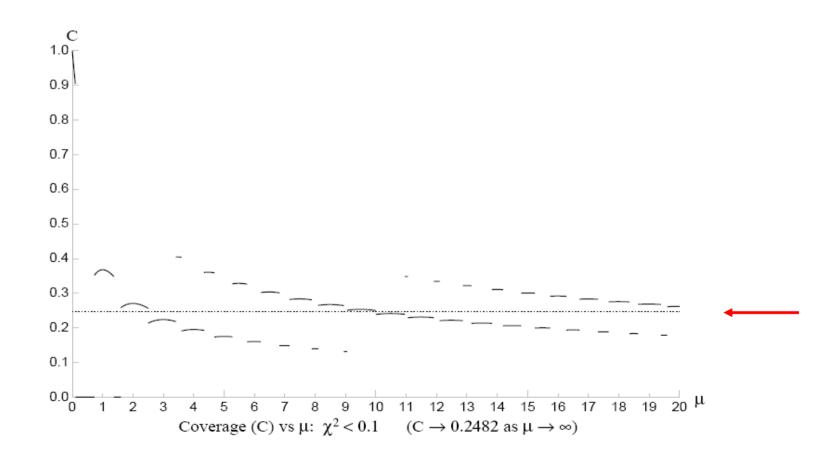


Probability ordering



$$\chi^2 = (n-\mu)^2/\mu$$
 $\Delta \chi^2 = 0.1$ \longrightarrow 24.8% coverage?

NOT frequentist : Coverage = 0% → 100%



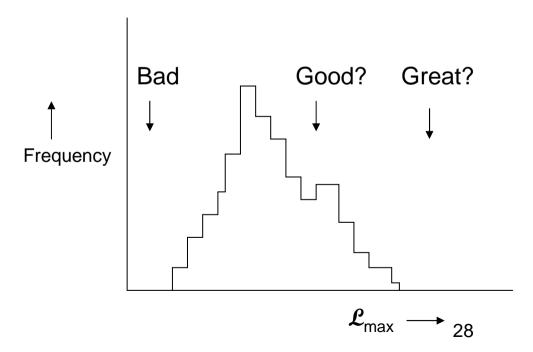
Unbinned \mathcal{L}_{max} and Goodness of Fit?

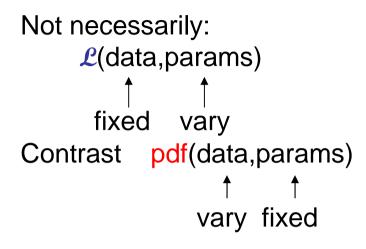
Find params by maximising $\mathcal L$

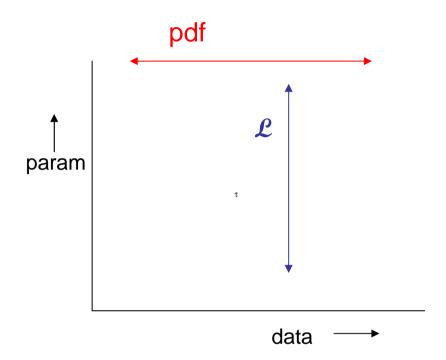
So larger \mathcal{L} better than smaller \mathcal{L}

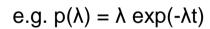
So \mathcal{L}_{max} gives Goodness of Fit??

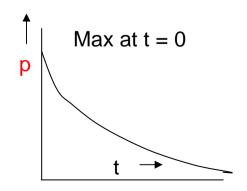
Monte Carlo distribution of unbinned \mathcal{L}_{\max}

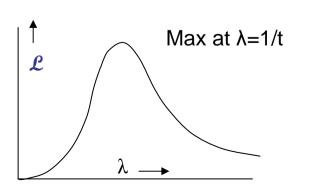












Example 1

Fit exponential to times t_1 , t_2 , t_3 [Joel Heinrich, CDF 5639]

$$\mathcal{L} = \Pi \lambda \exp(-\lambda t_i)$$

$$\ln \mathcal{L}_{\text{max}} = -N(1 + \ln t_{\text{av}})$$

i.e. Depends only on AVERAGE t, but is

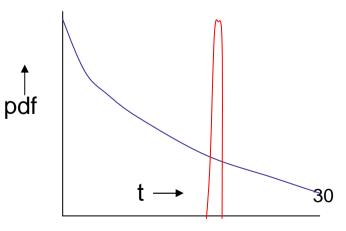
INDEPENDENT OF DISTRIBUTION OF t (except for......)

(Average t is a sufficient statistic)

Variation of \mathcal{L}_{max} in Monte Carlo is due to variations in samples' average t, but

NOT TO BETTER OR WORSE FIT

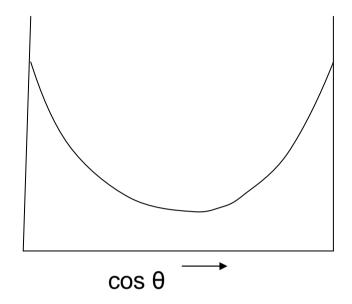
Same average t \Longrightarrow same \mathcal{L}_{max}



Example 2

$$\frac{d}{d \cdot c} = \frac{1 + \alpha c^{2} \theta}{1 + \alpha c^{3} \theta}$$

$$\mathcal{L} = \prod_{j} \frac{1 + \alpha c}{1 + \alpha c} \frac{2 \vartheta_{j}}{1 + \alpha c}$$



pdf (and likelihood) depends only on $cos^2\theta_i$ Insensitive to sign of $cos\theta_i$

So data can be in very bad agreement with expected distribution e.g. all data with $\cos\theta < 0$ and \mathcal{L}_{\max} does not know about it.

Example 3

Fit to Gaussian with variable μ , fixed σ

$$\rho = \frac{1}{\sigma\sqrt{2\pi}} e - \frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^{2} \right\}$$

$$\ln \mathcal{L}_{\text{max}} = N(-0.5 \ln 2\pi - \ln \sigma) - 0.5 \Sigma (x_{i} - x_{av})^{2} / \sigma^{2}$$

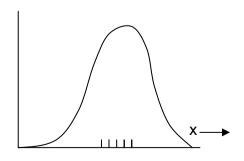
$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\text{constant} \qquad \text{~variance}(x)$$

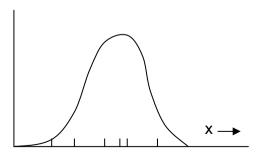
i.e. \mathcal{L}_{max} depends only on variance(x),

which is not relevant for fitting μ $(\mu_{est} = x_{av})$

Smaller than expected variance(x) results in larger \mathcal{L}_{max}



Worse fit, larger \mathcal{L}_{max}



Better fit, lower \mathcal{L}_{max}

\mathcal{L}_{max} and Goodness of Fit?

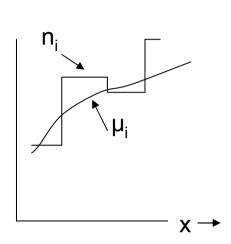
Conclusion:

Let has sensible properties with respect to parameters
NOT with respect to data

 \mathcal{L}_{max} within Monte Carlo peak is NECESSARY not SUFFICIENT

('Necessary' doesn't mean that you have to do it!)

Binned data and Goodness of Fit using *L*-ratio



$$\mathcal{L} = \prod_{i} P_{n_i} \, \mu_{i}(i)$$

$$\mathcal{L}_{\text{best}} = \prod_{i} P_{n_{i}} \mu_{i} \qquad)$$

$$= \prod_{i} P_{n_{i}} \eta_{i} \qquad)$$

$$ln[\mathcal{L}-ratio] = ln[\mathcal{L}/\mathcal{L}_{best}]$$

$$\rightarrow$$
 large μ i $-0.5\chi^2$ i.e. Goodness of Fit

 μ_{best} is independent of parameters of fit, and so same parameter values from $\boldsymbol{\mathcal{L}}$ or $\boldsymbol{\mathcal{L}}$ -ratio

L and pdf

Example 1: Poisson

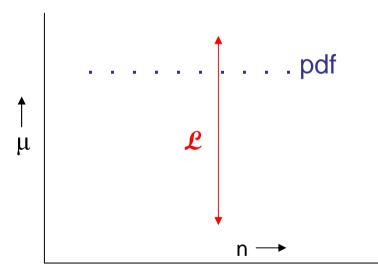
pdf = Probability density function for observing n, given μ

$$P(n;\mu) = e^{-\mu} \mu^{n}/n!$$

From this, construct £ as

$$\mathcal{L}(\mu;n) = e^{-\mu} \mu^n/n!$$

i.e. use same function of μ and n, but for pdf, μ is fixed, but for £, n is fixed



N.B. $P(n;\mu)$ exists only at integer non-negative n $\mathcal{L}(\mu;n)$ exists only as continuous function of non-negative μ

Example 2 Lifetime distribution

pdf
$$p(t;\lambda) = \lambda e^{-\lambda t}$$

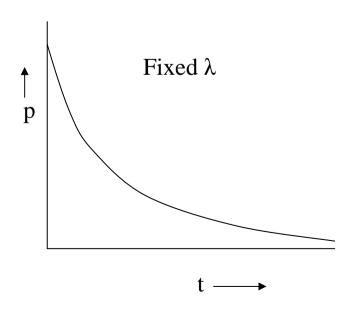
So
$$L(\lambda;t) = \lambda e^{-\lambda t}$$
 (single observed t)

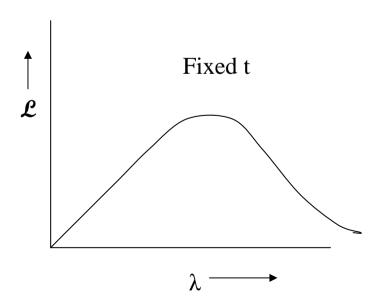
Here both t and λ are continuous

pdf maximises at t = 0

 \mathcal{L} maximises at $\lambda = t$

N.B. Functional form of P(t) and L(λ) are different





Example 3: Gaussian

$$\rho d x(;\mu) = \frac{1}{\sigma\sqrt{2\pi}} e -\left\{\frac{x(-\mu)^2}{2\sigma^2}\right\}$$

$$L \mu(;x) = \frac{1}{\sigma\sqrt{2\pi}} e -\left\{\frac{x(-\mu)^2}{2\sigma^2}\right\}$$

$$\rho -\left\{\frac{x(-\mu)^2}{2\sigma^2}\right\}$$

N.B. In this case, same functional form for pdf and £

So if you consider just Gaussians, can be confused between pdf and £

So examples 1 and 2 are useful

Transformation properties of pdf and \mathcal{L}

Lifetime example: $dn/dt = \lambda e^{-\lambda t}$

Change observable from t to
$$y = \sqrt{t}$$

$$\frac{d}{d} = \frac{d}{d} \frac{d}{d} = 2y\lambda e^{-\lambda y^{2}}$$

$$y \qquad t \qquad y$$
So (a) pdf changes, BUT
$$(b) \int_{t_{0}}^{\infty} \frac{d}{d} d = \int_{\sqrt{t_{0}}}^{\infty} \frac{d}{d} d$$

i.e. corresponding integrals of pdf are INVARIANT

Now for £ikelihood

When parameter changes from λ to $\tau = 1/\lambda$

(a') £ does not change

$$dn/dt = 1/\tau \exp\{-t/\tau\}$$

and so
$$\mathcal{L}(\tau;t) = \mathcal{L}(\lambda=1/\tau;t)$$

because identical numbers occur in evaluations of the two \mathcal{L} 's

BUT

(b')
$$\int_{0}^{\lambda_{0}} L \lambda(t) d\lambda \neq \int_{\tau_{0}}^{\infty} L \tau(t) d\tau$$

So it is NOT meaningful to integrate \mathcal{L}

(However,....)

	pdf(t;λ)	$\mathcal{L}(\lambda;t)$
Value of function	Changes when observable is transformed	INVARIANT wrt transformation of parameter
Integral of function	INVARIANT wrt transformation of observable	Changes when param is transformed
Conclusion	Max prob density not very sensible	Integrating £ not very sensible

CONCLUSION:

$$\int_{\rho_{l}}^{\rho_{u}} Ld = \alpha \quad \text{NOT recognised statistical procedure}$$

[Metric dependent:

 τ range agrees with τ_{pred} $\lambda \ range \ inconsistent \ with \ 1/\tau_{pred} \]$

BUT

- 1) Could regard as "black box"
- 2) Make respectable by $\mathcal{L} \longrightarrow Bayes'$ posterior

Posterior(λ) ~ $\mathcal{L}(\lambda)^*$ Prior(λ) [and Prior(λ) can be constant]

6) BAYESIAN SMEARING OF X "USE IN I FOR & 4 6 p SHEAR IT TO INCORORATE MX SLENARIO: UNCERTAINTIES MERSURED IN SUBSIDIARY EXPT $P(s, \epsilon | n) = P(n | s, \epsilon) T(s, \epsilon)$ P(s/n) = 3 P(s, e)n) de = $\int \mathcal{L} \pi(s) \pi(e) de$ 11 ... ds dee.g. $\pi(s) = truncated cost . <math>\pi(e) \sim e$ [SENARS i.e. SHEAR & (not had) by prior for E

Getting £ wrong: Punzi effect

Giovanni Punzi @ PHYSTAT2003 "Comments on £ fits with variable resolution"

Separate two close signals, when resolution σ varies event by event, and is different for 2 signals

- e.g. 1) Signal 1 $1+\cos^2\theta$ Signal 2 Isotropic and different parts of detector give different σ
 - 2) M (or τ)
 Different numbers of tracks \rightarrow different σ_{M} (or σ_{τ})

Events characterised by x_i and σ_i

A events centred on x = 0

B events centred on x = 1

$$\mathcal{L}(f)_{wrong} = \Pi [f * G(x_i, 0, \sigma_i) + (1-f) * G(x_i, 1, \sigma_i)]$$

$$\mathcal{L}(f)_{right} = \prod \left[f^* p(x_i, \sigma_i; A) + (1-f) * p(x_i, \sigma_i; B) \right]$$

$$p(S,T) = p(S|T) * p(T)$$

$$p(x_i,\sigma_i|A) = p(x_i|\sigma_i,A) * p(\sigma_i|A)$$

$$= G(x_i,0,\sigma_i) * p(\sigma_i|A)$$

So

$$\mathcal{L}(f)_{right} = \Pi[f * G(x_i, 0, \sigma_i) * p(\sigma_i|A) + (1-f) * G(x_i, 1, \sigma_i) * p(\sigma_i|B)]$$

If
$$p(\sigma|A) = p(\sigma|B)$$
, $\mathcal{L}_{right} = \mathcal{L}_{wrong}$

but NOT otherwise

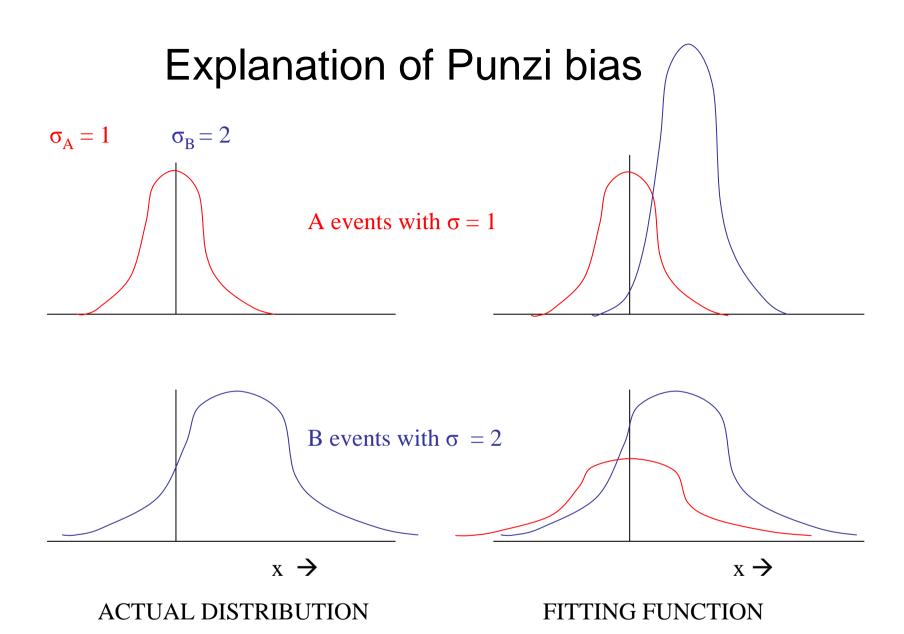
Giovanni's Monte Carlo for A: $G(x,0, \sigma_A)$

B: $G(x,1,\sigma_R)$

$$f_A = 1/3$$

		$oldsymbol{\mathcal{L}}_{wro}$	ng	$oldsymbol{\mathcal{L}}_{right}$	
$\sigma_{\!_{A}}$	$\sigma_{_{ m B}}$	f_A	$\sigma_{\!\scriptscriptstyle f}$	f_A σ_f	
1.0	1.0	0.336(3)	0.08	Same	
1.0	1.1	0.374(4)	0.08	0.333(0) 0	
1.0	2.0	0.645(6)	0.12	0.333(0) 0	
1 → 2	1.5 → 3	0.514(7)	0.14	0.335(2) 0.03	
1.0	1 → 2	0.482(9)	0.09	0.333(0) 0	

- 1) \mathcal{L}_{wrong} OK for $p(\sigma_A) = p(\sigma_B)$, but otherwise BIASSED
- 2) \mathcal{L}_{right} unbiassed, but \mathcal{L}_{wrong} biassed (enormously)!
- 3) \mathcal{L}_{right} gives smaller σ_f than \mathcal{L}_{wrong}

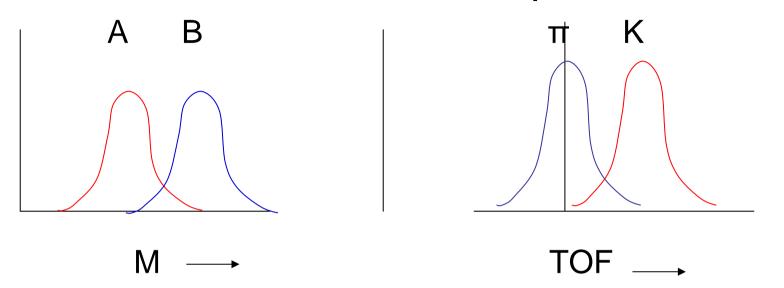


[N_A/N_B variable, but same for A and B events]

Fit gives upward bias for N_A/N_B because (i) that is much better for A events; and

46

Another scenario for Punzi problem: PID



Originally:

Positions of peaks = constant

K-peak \rightarrow π -peak at large momentum

$$\sigma_{i}$$
 variable, $(\sigma_{i})_{A} \neq (\sigma_{i})_{B}$ $\sigma_{i} \sim \text{constant}, \quad p_{K} \neq p_{\pi}$

$$\sigma_i \sim \text{constant}, \quad p_K \neq p_T$$

COMMON FEATURE: Separation/Error ≠ Constant

Where else??

MORAL: Beware of event-by-event variables whose pdf's do not appear in £

Avoiding Punzi Bias

BASIC RULE:

Write pdf for ALL observables, in terms of parameters

Include p(σ|A) and p(σ|B) in fit
 (But then, for example, particle identification may be determined more by momentum distribution than by PID)

OR

• Fit each range of σ_i separately, and add $(N_A)_i \rightarrow (N_A)_{total}$, and similarly for B

Incorrect method using \mathcal{L}_{wrong} uses weighted average of $(f_A)_j$, assumed to be independent of j

Conclusions

How it works, and how to estimate errors

 $\Delta(\ln \mathcal{L}) = 0.5$ rule and coverage

Several Parameters

*L*_{max} and Goodness of Fit

Use correct £ (Punzi effect)

Next time: χ^2 and Goodness of Fit

```
Least squares best fit
    Resume of straight line
    Correlated errors
    Errors in x and in y
Goodness of fit with \chi^2
      Errors of first and second kind
      Kinematic fitting
          Toy example
THE paradox
```