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It IS possible to spend a lifetime
analysing data without realising that

there aréawo very different
fundamental approachésstatistics:

BayesianisnandFreqguentism



How can textbooks not even mention
Bayes/ Frequentisif

For simplest case (mi 0’) « Gaussian
with no constraint on M(TrU€) then

Mm-ko <m(true) <m+Kko

at some probabillity, for both Bayes and Frequentist
(but different interpretations)

6
See Bob Cousins “Why isn’t every physicist a Bage?' Amer Jrnl Phys 63(1995)398



We need to make a statement about
Parameters, Given Data

The basic difference between the two:

Bayesian . Probability (parameter, given data)
(an anathema to a Frequentist!)

Frequentist : Probabllity (data, given parameter)
(a likelihood function)



PROBABILITY
MATHEMATICAL

Formal

Based on Axioms

FREQUENTIST

Ratio of frequencies as n-> infinity
Repeated “identical” trials

Not applicable to single event or physical constant

BAYESIAN Degree of belief

Can be applied to single event or physical constant

(even though these have unique truth)
Varies from person to person  ***

Quantified by “fair bet”



Bayesian versus Classical
Bayesian
P(A and B) = P(A;B) x P(B) = P(B;A) x P(A)
e.g. A =event contains t quark
B = event contains W boson

or A=1I1amin Padova

B =1 am giving a lecture
P(A;B) = P(B;A) x P(A) /P(B)

Completely uncontroversial, provided....



Bayesian P(A, B) = P(B; éz;)P(A) Tﬁayes’

p(param | data) a p(data | param) * p(param)

I ! i

posterior likelihood prior

Problems: p(param) Has particular value
“Degree of belief”
Prior What functional form?

Coverage
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P(parameter) Has specific value
“Degree of Belief”
Credible interval

Prior: What functional form?

Uninformative prior: flat?

In which variable? e.qg. m,m2, Inm,....7

Even more problematic with more params
Unimportant if “data overshadows prior”
Important for limits

Subjective or Objective prior?
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Bayes Specific example

Particle decays exponentially:  dn/dt =c{EXxp(-tk)
Observe 1 decay attimgt  £(t) = (1f) exp(-t/1)
Choose priot(t) fort 1
e.g. constant up to some large L
Then posterior pf =£(t) * n(1)
has almost same shapelfs)

Use pf) to choose interval for T—
T In usual way

Contrast frequentist method for same situation later

15



Bayesian posterio® intervals

Upper limit

Central interval

Lower limit

Shortest

T T 16




Upper limit ot S0Z CL, s,

11

llya Narsky, FNAL CLW 2000
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P (Data;Theory) Z P (Theory;Data)
HIGGS SEARCH at CERN

|s data consistent with Standard Model?
or with Standard Model + Higgs®?

End of Sept 2000: Data not very consistent with S.M.
Prob (Data ; S.M.) < 1% valid frequentist statement

Turned by the press into: Prob (S.M. ; Data) < 1%
and therefore Prob (Higgs ; Data) > 99%

l.e. “It is almost certain that the Higgs has been seen”
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P (Data;Theory) P (Theory;Data)

Theory = male or female

Data = preghant or not pregnant

P (pregnant ; female) ~ 3%

19



P (Data;Theory) P (Theory;Data)

Theory = male or female

Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%

OUt

P (female ; pregnant) >>>3%
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Example 1 : Is coin fair ?

Toss coin: 5 consecutive tails

What is P(unbiased; data) ? I.e. p =%

Depends on Prior(p)

If village priest:

If stranger In pub:

prior ~ o(p = 1/2)

orior~1 for0O<p<1

(also needs cost function)

21




Example 2 : Particle Identification

Try to separate 7t'S and protons

probability
probability
probability
probability

(p tag; real p) = 0.95
(m tag; real p) = 0.05
(p tag; real ) = 0.10
(m tag; real m) = 0.90

Particle gives proton tag. What is it?

Depends

f proton

f genera

fpure n

on prior = fraction of protons
peam, very likely
secondary particles, more even

neam, ~0

22



Peasant and Dog

1) Dogd has 50%
probability of being . 0
100 m. of Peasamt
2) Peasanp has 50% X =)
probability of being
within 200m of Dogd

River x =0 River x =1 km

23



Given that: a) Dogd has 50% probability of
being 100 m. of Peasant,

IS It true that: b) Peasanp has 50% probability of

being within 100m of Dogl ?

Additional information

O<h<lkm

e Dog can swim across river - Statement a) still true

* Rivers at zero & 1 km. Peasant cannot cross them.

dog
Statemenb) untrue

If dog at —101 m, Peasant cannot be within 100

24
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Classical Approach

Neyman “confidence interval”’ avoids pdf for u
Uses only P(x;u)

Confidence interval 1 - U2
P( M1 . U2 contains U ): a True forany U

T 1 L]

Varying intervals fixed
from ensemble of
experiments

Gives range of [{ for which observed value X,was “likely” (O )
Contrast Bayes : Degree of belief = @ that kisin i - U
26
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FrequentismSpecific example

Particle decays exponentially:  dn/dt ={BXxp(-tk)
Observe 1 decay attimgt  £(tr) = (1k) exp(-t/1)
Construct 68% central interval

i t=.14
dn/dt T

t=1.&

28



90% Classical interval for Gaussian
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L < U <

Frequentist

Bayesian

IUu at 90% confidence

A and Lh known, but random
A4 unknown, but fixed
Probability statement about A4 and qu

,Ux and ,Uu known, and fixed

M unknown, and random
Probability/credible statement about IU

30




Coverage

Fraction of intervals containing true value
Property oimethod not of result

Can vary with param

Frequentisconcept. Built in to Neyman construction
Some Bayesians reject idea. Coverage not guaranteed
Integer data (Poissory discontinuities

|deal coverage plot

h

HL— 31




Coverage L approach (Not frequentist)

P(n,n) = etu"/n!  (Joel Heinrich CDF note 6438)
-2 In< 1 r=P(p)/P(ny,.) UNDERCOVERS
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Frequentist central intervals, NEVER undercovers

(Conservative at both ends)
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Classical Intervals

* Problems Hard to understand e.g. d’Agostini e-malil
Arbitrary choice of interval
Possibility of empty range
Nuisance parameters (systematic eprors

Widely applicable

* Advantages _
Well defined coverage

35



FELDMAN - COUSINS

Wants to avoid empty classical intervals>

Uses “L-ratio ordering principle” to resolve
ambiguity about “which 90% region?”"->
[INeyman + Pearson sa&3¢ratio is best for
hypothesis testing]

No ‘Flip-Flop’ problem

36
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Flip-flop

Black lines Classical 90% central interval

Red dashed: Classical 90% upper limit
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Poisson confidence intervals. Background =3
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Importance of Ordering Rule

Neyman construction in 1 parametgr
2 measurement&: Xz

p(x;u)=G(x-u,1)

An aside: Determination of single parameter p \A’a2

Range of parameters given by
1) Values of A for which data

2) XN < 2 (A)+1

) e e Acceptable level OI)(2 2) is good

2
1) Range depends cfyin

5 U is likely i.e. p(X%)is
X acceptable or

[“Confidence interval coupled to goodness of fit"] 43



- Neyman Construction

For given U, acceptable ( X1, X2)
satisfy

X1— )(2: (Xl—/J)Z + (Xz — /,1)2 < Ccut
Defines cylinder In (,U, X, Xz)space

Experiment gives (Xl, Xz) — M Interval

Range depends on ‘Xl — Xz

U= Xl-lz-xzi\/z—(xl—Xz)z/z

Range and goodness of fit are coupled 44




That was using Probability Ordering
Now change to Likelihood Ratio Ordering

For X1 7 Xz ,no value of U4 gives very good fit

For Neyman Construction at fixed M , compare:
(X1 i /,1)2 + (Xz o ,U)Z with (X1 — ,Ubest)z + (Xz — ,Ubea)z
where A4 = (X1 + Xz)/ 2
giving [u - ux +%)+ ><1+><2 } x1+x2)}

Cutting on Likelihood Ratio Ordering gives:

+
== .




Therefore, range of H is
Constant Width
Independent of X, — X,

\
A \
N \
N \
A \
A} \
> N
A \
N \
Al \
\ \
A N
N \
A \
< A » N
~ » \ —>
A \
\
{ ’ \
N

Confidence Range and Goodness of Fit are completely decoupled

46



Standard Frequentist

Pros:

Coverage

Widely applicable

cons:

Hard to understand
Small or empty intervals
Difficult iIn many variables (e.g. systematics)

Needs ensemble a7



Bayesian

Pros:

Easy to understand

Physical interval

cons:

Needs prior
Coverage not guaranteed

Hard to combine

48



SYSTEMATICS

For example
events
Observed Physics we need to know these,

parameter probably from other
I
measurements (and/or theory)
N++/N

Y Uncertainties =error in (J
for statistical errors

Some are arguably statistical errors

Shift Central Value LA =LA 0,
Bayesian b = b, £ 0,
Frequentist

49
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Shift Nuisance Parameters

N = o LA +D

events

Simplest Method
Evaluate 0, using LA, and by

Move nuisance parameters (one at a time) by
their errors - 0o, & oo,

If nuisance parameters are uncorrelated,
combine these contributions in quadrature

50

—> total systematic



Bayesian

Without systematics p(a'; N) ] p(N; J)H (0)

T
prior

With systematics

p(a, LA, b; N) [] p(N; o, LA, b)l‘l (a, LA, b)
T

~M,(0)1,(LA)4(b)
Then integrate over LA and b

p(o:N) = I p(o, LA b; N ) dLAdb

51



p(o:N) = [f p(o, LA, b; N )dLA db

If T1 1(U): constant and Il 2(LA) = truncated Gaussian TROUBLE!

Upper limiton T from jp(O", N)do

Significance from likelihood ratio for =0 and O hax

52



Frequentist
Full Method

Imagine just 2 parameters g and LA

and 2 measurements N and M

1 T
Physics Nuisance

Do Neyman construction in 4-D

Use observed N and M, to give T

68%
Confidence Region for LA andg "




Then project onto T axis
This results in OVERCOVERAGE

Aim to get better shaped region, by suitable
choice of ordering rule

Example: Profile likelihood ordering

54



Full frequentist method hard to apply in several
dimensions

Used in < 3 parameters

For example: Neutrino oscillations (CHOQOZ)
sin® 28 , Am’
Normalisation of data

Use approximate frequentist methods that reduce
dimensions to just physics parameters

e.g. Profile pdf
.e. pdfproﬁle(N;U): pdif (N’MO;J’ LAbest)
Contrast Bayes marginalisation

Distinguish “profile  ordering”

See Giovanni Punzi, PHYSTATO5 page 88
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Talks at FNAL CONFIDENCE LIMITS WORKSHOP

(March 2000) by:

Gary Feldman

Wolfgang Rolke

hep-ph/0005187 version 2

Acceptance uncertainty worse than Background uncertainty

Limit of C. Lim. asoc > 0
ZC.L.foro =0

Need to check Coverage

*

T

Lim

56



Method: Mixed Frequentist - Bayesian

Bayesian for nuisance parameters and

Frequentist to extract range

Philosophical/aesthetic problems?

Highland and Cousins

(Motivation was paradoxical behaviour of Poisson limit
when LA not known exactly)

57



Bayesian versus Frequentism

Bayesian Erequentist

Basis of Bayes Theorem - Uses pdf for data,
method Posterior probability for fixed parameters

distribution
Meaning of | Degree of belief Frequentist definition
probability
Prob of Yes Anathema
parameters?
Needs prior? | Yes NoO
Choice of Yes Yes (except F+C)
Interval?
Data Only data you have ...+ other possible
considered data
Likelihood Yes No

principle?

58




Bayesian versus Frequentism

Bayesian Frequentist
Ensemble of |No Yes (but often not
experiment explicit)
Final Posterior probability Parameter values -
statement distribution Data is likely
Unphysical/ Excluded by prior Can occur

empty ranges

Systematics Integrate over prior Extend dimensionality
of frequentist
construction

Coverage Unimportant Built-in

Decision Yes (uses cost function) | Not useful 5

making




Bayesianism versus Frequentism

“Bayesians address the question everyone Is
Interested In, by using assumptions no-one
believes”
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