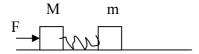

Domande d'esame tratte dalle prove di accertamento in itinere degli anni precedenti

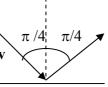
1) Una pallina di massa m=0,05 kg , appesa ad un filo inestensibile di lunghezza L=1,2 m , oscilla in un piano verticale sotto l'azione della forza peso. Quando passa per la verticale, ha una velocita' $v_0=1,5$ m/s. Calcolare la tensione del filo T in quell' istante:


 $T = \dots$

- 2) Un blocchetto di massa m=0,2 kg e' poggiato in quiete su un piano scabro, inclinato di θ =10° rispetto ad un asse orizzontale. Esso e' attaccato all'estremita' inferiore di una molla di costante elastica k=4N/m (vedi figura). La molla e' compressa di Δ x=6 cm rispetto alla posizione di riposo. Il coefficiente d'attrito statico e' μ s=0,4. Determinare:
 - la forza d'attrito statico che si sviluppa: F_S=
 - la massima compressione della molla perche' il corpo rimanga in quiete: $\Delta x^{MAX} \!\! = \!\!$

3) Due oggetti di massa m=3 Kg e M = 5 Kg sono attaccati ai due estremi du una molla di costante elastica k=50 N/m. I due corpi procedono con velocita' eguali su un piano orizzontale privo d'attrito, spinti da una forza F = 20 N che agisce sulla massa M.

Determinare la compressione della molla: $\Delta x = \dots \Delta x$

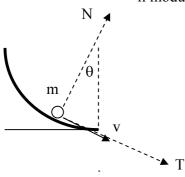

Ripetere l'esercizio nel caso in cui la forza F tiri il corpo di massa m (in questo caso la molla e' allungata).

4) Ad un oggetto di massa m= 2 kg sono applicate contemporaneamente due forze: $\mathbf{F_1} = (F_{1x}, F_{1y}) = (3,0)$ N e $\mathbf{F_2} = (F_{2x}, F_{2y}) = (0,4)$ N. Si determini il modulo dell'accelerazione **a** dell'oggetto e l'angolo θ tra il vettore **a** e l'asse x.

$$a = \dots, \quad \theta = \dots$$

5) Si enunci il teorema dell' impulso.

Si calcoli l'impulso trasferito dal pavimento ad una palla di massa m=0,4 kg che lo colpisca con velocita' v=5m/s inclinata di π /4 rispetto alla normale al pavimento, rimbalzando con la stessa velocita' in direzione perpendicolare a quella incidente (vedi figura).

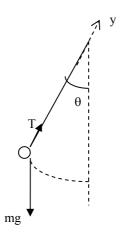

6) Si scriva l'equazione differenziale di un moto armonico.

Si esprima la pulsazione ω per un moto armonico di una massa m sulla quale agisce una forza elastica di costante elastica k. Si calcoli il periodo di oscillazione per m = 0,5 kg e k = 20 N/m.

$$\omega = \dots$$
 $T = \dots$

7) Ad un oggetto di massa m = 2 Kg sono applicate contemporaneamente una forza di intensita' $F_1 = 2$ N ed una forza $F_2 = 2F_1$ che forma un angolo $\theta = 30^\circ$ con la direzione di F_1 . Calcolare il modulo dell' accelerazione dell' oggetto:

- 8) Una pallina di massa m = 0,1 Kg scende sotto l'azione della forza peso $m\mathbf{g}$ lungo la guida circolare priva di attrito di raggio R=0,5 m disegnata in figura, posta in un piano verticale. Detta $\mathbf{\Phi}$ la reazione vincolare esercitata dalla guida, si scriva la equazione vettoriale che esprime la 2^a legge di Newton per il moto della pallina, e si scrivano le proiezioni di tale equazione lungo gli assi N e T, rispettivamente normale e tangente alla traiettoria. Se nel punto di posizione $\theta=30^\circ$ (vedi figura) la velocita e' v=1,5 m/s, determinare in tale posizione:
 - l'accelerazione normale della pallina: $a_N = \dots$
 - il modulo dell' accelerazione: a =
 - il modulo della reazione vincolare: $\Phi = \dots$



Soluzioni:

1) Una pallina di massa m=0,05 kg , appesa ad un filo inestensibile di lunghezza L=1,2 m , oscilla in un piano verticale sotto l'azione della forza peso. Quando passa per la verticale, ha una velocita' $v_0=1,5$ m/s. Calcolare la tensione del filo T in quell' istante.

Proiettando la legge di Newton lungo l' asse y normale alla traiettoria circolare della pallina: $m a_N = m v_o^2 / L = T - mg \cos \theta$

$$\Rightarrow$$
 T = $mv_o^2/L + mg \cos \theta = 0.557$

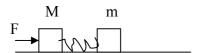
- 2) Un blocchetto di massa m=0,2 kg e' poggiato in quiete su un piano scabro, inclinato di θ =10° rispetto ad un asse orizzontale. Esso e' attaccato all'estremita' inferiore di una molla di costante elastica k = 4N/m (vedi figura). La molla e' compressa di Δx =6 cm rispetto alla posizione di riposo. Il coefficiente d'attrito statico e' μ_S =0,4. Determinare:
 - la forza d'attrito statico che si sviluppa; essa equilibra la spinta della molla (diretta verso il basso) e la componente della forza peso lungo il piano inclinato:

$$F_S = k \Delta x + mg \sin \theta = 0,58 \text{ N}$$

- la massima compressione della molla perche' il corpo rimanga in quiete; la forza d' attrito che si sviluppa e' inferiore o uguale alla massima forza d' attrito statico possibile:

$$\begin{split} F_S &= k \; \Delta x + mg \; sin \; \theta \leq F_s^{\; max} = \mu_S \; mg \; cos \; \theta \\ &\Rightarrow \Delta x \; \leq \; mg \; (\mu_S \; cos \; \theta - \; sin \; \theta \;) \; / \; k = \; \Delta x^{MAX} = 0,108 \; m \end{split}$$

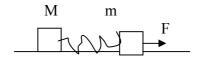
3) Due oggetti di massa m=3 Kg e M = 5 Kg sono attaccati ai due estremi du una molla di costante elastica k=50 N/m. I due corpi procedono con velocita' eguali su un piano orizzontale privo d'attrito, spinti da una forza F = 20 N che agisce sulla massa M.


Determinare la compressione della molla.

La legge di Newton per l' oggetto di massa m e': ma = k Δx mentre per l' oggetto di massa M e': Ma = $F - k \Delta x$

Sommando le due equazioni membro a membro:

$$(M + m) a = F$$
 ossia $a = F / (m+M) = 2.5 \text{ m/s}^2$


(questa e' anche l' equazione relativa ad un unico oggetto di massa complessiva M+m, sospinto dalla sola forza F)

In definitiva: $\Delta x = ma / k = m F / [k (m+M)] = 0.15 m$

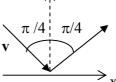
Nel caso in cui F sia applicata, in trazione, alla massa m, si ha:

$$Ma = k \Delta x$$
$$m a = F - k \Delta x$$

- \Rightarrow (m + M) a = F (1' accelerazione e' ovviamente uguale al caso precedente); 1' estensione della molla e' : $\Delta x = M$ a/k = M F / [(m+M)k] = 0,25 m.
- 4) Ad un oggetto di massa m= 2 kg sono applicate contemporaneamente due forze: $\mathbf{F_1} = (F_{1x}, F_{1y}) = (3,0)$ N e $\mathbf{F_2} = (F_{2x}, F_{2y}) = (0,4)$ N. Si determini il modulo dell'accelerazione \mathbf{a} dell' oggetto e l'angolo θ tra il vettore \mathbf{a} e l'asse x.

Le due forze sono tra loro perpendicolari; il modulo della forza totale e': $F = (3^2 + 4^2)^{1/2} = 5 \text{ N}$

e quindi l'accelerazione cui e' soggetto il corpo e': a = F/m = 2.5 m/s


La sua direzione forma l'angolo θ con l'asse x tale che: tan $\theta = F_{2y}/F_{1x} = 4/3$ ossia $\theta = 53,1$ °.

5) Il teorema dell' impulso afferma che:

L' impulso **J** trasferito in un dato intervallo di tempo da una forza ad un corpo e' uguale alla variazione di quantita' di moto **p** del corpo nello stesso intervallo:

$$J = \Delta p$$

Si calcoli l'impulso trasferito dal pavimento ad una palla di massa m=0,4 kg che lo colpisca con velocita' v=5m/s inclinata di π /4 rispetto alla normale al pavimento, rimbalzando con la stessa velocita' in direzione perpendicolare a quella incidente (vedi figura).

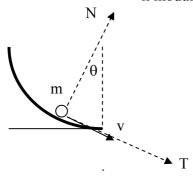
La quantita' di moto lungo l' asse orizzontale x non varia; quindi $J_x = \Delta p_x = 0$

Invece: $J_y = \Delta p_y = mv_y - (-mv_y) = 2mv_y = 2mv \cos(\pi/4) = 2,84 \text{ N} \cdot \text{s}$

6) L' equazione differenziale del moto armonico e': $\frac{d^2x(t)}{dt^2} = -\omega^2x(t)$

Si esprima la pulsazione ω per un moto armonico di una massa m sulla quale agisce una forza elastica di costante elastica k. Si calcoli il periodo di oscillazione per m = 0,5 kg e k = 20 N/m.

$$\omega = [k/m]^{1/2}$$
 $T = 2\pi / \omega = 0.99 \text{ s}$


7) Ad un oggetto di massa m = 2 Kg sono applicate contemporaneamente una forza di intensita' $F_1 = 2$ N ed una forza $F_2=2F_1$ che forma un angolo $\theta=30^\circ$ con la direzione di F_1 . Calcolare il modulo dell' accelerazione dell' oggetto.

Orientato l'asse x lungo la direzione di F_1 , la forza totale $F = F_1 + F_2$ ha componenti:

$$F_x = F_1 + 2F_1 \cos \theta = 5,46 \text{ N}$$

 $F_y = 2 F1 \sin \theta = 2 \text{ N}$

Il modulo della forza e' $F = [F_x^2 + F_y^2]^{1/2} = 5.81 \text{ N}$ L' accelerazione del corpo e' : $a = F/m = 2.9 \text{ m/s}^2$

- - l'accelerazione normale della pallina: $a_N = \dots$
 - il modulo dell' accelerazione: a =
 - il modulo della reazione vincolare: $\Phi = \dots$

La legge di Newton e' data da: $mg + \Phi = m a$

Proiettando tale equazione vettoriale lungo gli assi N e T si ha:

asse T:
$$mg \sin \theta = m a_T$$

pertanto :
$$a_T = g \sin \theta = 4.9 \text{ m/s}^2$$

 $a_N = v^2/R = 4, 5 \text{ m/s}^2$

$$\Rightarrow a = [a_T^2 + a_N^2]^{1/2} = 6,65 \text{ m/s}^2$$

la reazione vincolare vale: $\Phi = m v^2/R + mg \cos \theta = 1,3 N$